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Abstract
Game-based learning is increasingly recognized as an effective tool for teaching diverse skills, particularly in
science education, due to its interactive, engaging, and motivational qualities, along with timely assessments and
intelligent feedback. However, more empirical studies are needed to facilitate its wider application in school curricula.
A significant challenge is designing and implementing valid in-game assessments crucial for measuring student
progress and providing reliable references for instructors’ intervention decisions. Stealth Assessment, guided by the
Evidence-Centered Design (ECD) framework, offers a promising solution but requires more specific guidelines for
full effectiveness. In this study, we present a granular, framework-supported pipeline to systematically implement
stealth assessments in a game-based learning environment. This pipeline involves constructing an ECD frame-
work, generating features, selecting appropriate models, preprocessing data, evaluating model performance, and
conducting model inference on a black-box computational model. We validate the effectiveness of this pipeline by
assessing the performance of these computational models and identifying distinct behavioral patterns between high
and low performers. Our analysis highlights potential areas for improvement in the design of stealth assessments
within digital games for learning. Furthermore, we discuss the generalizability of the proposed pipeline and outline
limitations for future research to address.

• Our study details and validates a systematic approach for developing and applying stealth assessment via
a granular embedded logging system. We demonstrate this approach’s efficacy in game-based learning,
outlining strategies for stealth assessment structuring, feature generation, computational model selection
and training, performance evaluation, and inference. Our findings underscore the importance of selecting
suitable frameworks for each procedure to enhance the feasibility, efficiency, and effectiveness of stealth
assessments. Importantly, our defined process initiates the formation of a guideline for implementing stealth
assessment in other game-based learning contexts.

• Concerning the feature generation process, we advise using a suitable framework and performing multi-level
classification on the data based on the information reflected. This enhances model interpretability and
enables analytics at various granularity levels to meet research requirements.

• The performance of the computational model suggests that combining in-game learning progress, as
indicated by embedded assessment scores, with behaviors yields the most accurate predictions of learning
outcomes.

• Implementing a surrogate model, commonly a white-box model, is a practical approach for interpreting
black-box models. Through detailed analysis of inference results, we identify distinct behavioral patterns
between high and low-outcome students in the game.

• Drawing on insights from model inference results and the iterative design paradigm within the Evidence-
Centered Design framework, we discuss how to continuously refine our proposed pipeline for establishing
stealth assessments and offer recommendations for designing and developing adaptive stealth assessments
in game-based learning environments.
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1. Introduction
Game-based learning (GBL) is an in�uential tool in science education, enhancing student learning ef�ciency and skill mastery
(M. Wang & Zheng, 2021; L. H. Wang et al., 2022). It fosters competencies vital for science learning, such as motivation,
conceptual understanding, and science process skills (Laffey et al., 2017). Contrasting entertainment games, educational
games focus on skill development and knowledge acquisition. Their interactive nature offers an engaging medium for students,
allowing the repetitive practice of a progressive science curriculum under guidance or self-paced learning (Breuer & Bente,
2010; Maryani & Hidayat, 2019/05; Fadila et al., 2023). Their replay feature promotes learning from failure and strategy
re�nement (Zhang & Rutherford, 2022). Teachers, in turn, can enhance pedagogical designs for improved, timely support
(Shohel et al., 2022). The effectiveness of GBL depends on the availability of relevant, timely information for optimal adaptation
during gameplay (Sevcenko et al., 2021).

While the potential bene�ts of GBL are widely recognized, particularly in fostering problem-solving skills and enabling
adaptive learning through timely feedback, the effectiveness of GBL is also subject to debate, with several controversial aspects
that warrant careful consideration. Recent studies have identi�ed potential downsides, such as cognitive overload, equity
accessibility issues, dif�culties in skill transfer to real-world applications, and challenges in measuring complex learning
outcomes. For example, cognitive overload can occur if the game design is too complex or not well aligned with learning
objectives, potentially reducing ef�ciency (Sevcenko et al., 2021; Seyderhelm & Blackmore, 2023). Additionally, concerns
about equity and accessibility persist, as some students may lack access to the necessary technology or digital literacy skills,
raising issues of inclusivity in digital learning environments (Haas & Tussey, 2022; Rohmani & Pambudi, 2023). Moreover,
there are ongoing challenges regarding the transferability of skills acquired through GBL to real-world contexts, with evidence
suggesting that skills developed in game environments do not always translate into improved academic or practical performance
(Cerra et al., 2022; Nietfeld, 2020).

Furthermore, there are concerns that game elements may overshadow educational objectives, resulting in shallow learning
where the focus shifts from educational content to game mechanics. Recent literature suggests that overly gami�ed environments
may prioritize entertainment over meaningful learning, potentially diminishing deeper cognitive engagement and retention
of material (Bernecker & Ninaus, 2021; Manzano-León et al., 2021). Additionally, accurately measuring complex learning
outcomes – such as critical thinking, creativity, and problem-solving – remains a signi�cant challenge in GBL. Despite the
extensive data generated by these environments, there is a lack of standardized metrics and validated models for assessing these
higher-order skills effectively (Zhu et al., 2023; Strukova et al., 2023). These controversies underscore the need for a nuanced
approach to integrating and assessing GBL within educational curricula, ensuring that its potential bene�ts are realized while
addressing its limitations.

Active engagement with educational games bolsters students' problem-solving skills (Rosydiana et al., 2023). These
interactions produce extensive data traces, which, when designed to align with game learning objectives, can enhance students'
learning approaches and offer valuable insights for teaching (Georgiadis et al., 2019). To harness these bene�ts, practitioners
have integrated a data collection system, or logging system, and corresponding assessments directly into game design, in
contrast to traditional instruction where assessments are often an afterthought (Loh et al., 2016; Zhu et al., 2023). Such
integration enables educational games to act as intelligent tutoring systems, offering timely feedback that supports student
learning and encourages adaptive strategies during gameplay (Gee, 2003; V. J. Shute, 2008; Hooshyar et al., 2016; Ke et al.,
2019; Yu et al., 2022).

Stealth assessment, a formative method also known as ”assessment for learning,” is notably bene�cial in game-based
learning environments (J. P. Rowe et al., 2009; V. J. Shute, 2011a; Mislevy et al., 2003; Baker et al., 2010). It operates on
three primary principles: 1) unobtrusive data collection, 2) evaluation of complex competencies like critical thinking, and 3)
sequential and detailed monitoring of learning progress to offer personalized feedback. Integrating stealth assessment in these
environments is a complex, resource-intensive task requiring multidisciplinary collaboration (computer science, education,
psychology, statistics, etc.). A comprehensive framework for integrating game logs, feature engineering, computational model
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building, and model interpretation is essential to maximize the utility of stealth assessment for both students and teachers in a
game-based learning scenario.

Interdisciplinary collaboration within educational game design requires a robust alignment of technical tasks and learning
objectives, with learning as the ultimate objective. The Evidence-Centered Design (ECD) approach serves as a foundational
methodology for stealth assessment, validated by numerous studies across different educational games (V. J. Shute, 2011b;
V. Shute & Ventura, 2013; V. J. Shute et al., 2016; V. Shute et al., 2017; V. J. Shute & Rahimi, 2021; Moore & Shute, 2017;
Min et al., 2020; Henderson et al., 2020, 2022). ECD incorporates three main components: Competency, Evidence, and Task
models. The competency model probabilistically represents students' skills and knowledge. The evidence model demonstrates
how student behavior observations can reveal their competencies. The task model de�nes challenges that produce evidence for
inferring students' competency levels (V. J. Shute, 2011b; V. Shute & Ventura, 2013; Ma et al., 2015).

1.1 Need for Comprehensive Stealth Assessment Design and Evaluation
Although prior research indicates the potential of stealth assessment, educational game creators face a range of approaches
for developing models and identifying game-speci�c features, with limited comprehensive evaluations of their comparative
performance (Jeon et al., 2023; Gomez et al., 2023; Georgiadis et al., 2021;?).

Our study builds upon the development of Mission HydroSci (MHS), a 3-D game-based learning environment. MHS
employs a co-curricular design that complements teacher interaction. It is developed alongside the curriculum to teach middle
school students' water science knowledge and scienti�c argumentation. Each unit in MHS corresponds to a speci�c curriculum
objective, shaping the game mechanics. In MHS, players become junior scientists on a mission to establish a settlement on the
newly discovered planet WAT247. They can explore the game world, search for hints, and complete quests in different formats
such as puzzles, item searches, and path�nding.

Along with the game, there is an integrated logging system. The system captures events related to in-game activities and
learning progress. Our logging system draws inspiration from the works of Carvalho 2015 and Serrano-Laguna 2017. Carvalho
and colleagues introduced the Activity Theory-based Model of Serious Games (ATMSG) to de�ne and deconstruct explicit
content for the logging system to collect. This content includes key features re�ecting students' in-game progress, behavior, and
decisions, recorded in chronological sequences of trace data. Serrano-Laguna and colleagues proposed an xAPI standardization
for structuring de�ned content into data statements in JSON format, saved in remote databases.

Further application and empirical evidence are needed to validate the effectiveness of combining both frameworks, ATMSG
(Fokides et al., 2019; Alonso-Fernández, Freire, et al., 2021) and xAPI (Schardosim Simão et al., 2018; Heinemann et al.,
2022), for logging system design and development, a gap our paper aims to address. Additionally, due to the diverse nature of
the in-game activities within MHS, we faced challenges in designing appropriate data coding schemes and generating relevant
features from raw logs for model construction with interpretability for education and learning purposes. In this study, we
propose a potential approach for generalizing the feature generation process based on a complex learning system like MHS.

To summarize, our main goal is to develop a stealth assessment for evaluating students' learning outcomes related to water
science knowledge taught in Unit 3 of MHS. To validate its effectiveness, we used gameplay log data from over 300 students
and their external post-assessment scores as the learning standard for constructing and evaluating prediction models. We
integrated our model prediction procedure into the ECD approach and employed the Integrated Design of Event-stream for
Analysis (IDEFA) framework (Owen & Baker, 2020) to guide our feature generation process. We then preprocessed the feature
set for model training, evaluated model performance to verify the effectiveness of our stealth assessment, and conducted model
inference for result interpretation. Based on the inference results, we discussed the generalizability of our comprehensive
pipeline for implementing a stealth assessment within MHS.

1.2 Research Questions
More speci�cally, to achieve our research goal, we probe and present solutions for the following research questions:

1. Research question 1 (RQ1): By applying, adapting, and extending existing models and frameworks for MHS, how and to
what extent are they valid for stealth assessment within MHS?

2. Research question 2 (RQ2): How do the inference results from interpreting the black-box computational model inform
future stealth assessment design and game-based learning development?

2. Literature Review

2.1 High-level conceptual models guiding the game design and learning analytics
Data-driven methods, including learning analytics and educational data mining, are crucial in education, but their validity
rests on the quality of data collection aligned with research goals. The system design and implementation framework play a
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signi�cant role in ensuring the appropriateness of collected data. Various validated models and frameworks have been proposed
to guide this process, each emphasizing different areas.

This study builds on prior research on conceptual models for learning analytics within game-based learning. De Freitas
et al. (2006) introduced a framework incorporating pedagogic considerations, mode of representation, learner speci�cation,
and context, primarily suited for pre-existing video games. However, limitations such as restricted instructor usage, lack of
dimension transformation, and limited learning context present opportunities for future research. Further, Gunter et al. (2006)
proposed the RETAIN model for new game design, blending three validated paradigms: Gagne's nine events of instruction,
Keller's ARCS model of motivation, and Bloom's learning domains. Despite showing potential for embedding learning content
into game design, it requires further illustration and case studies for validation and linking pedagogical design with speci�c
game elements.

Arnab et al. (2015), addressing Gagne's model's shortcomings, developed a Learning Mechanics-Game Mechanics (LM-
GM) model that effectively translates pedagogical practices into game mechanics. Validated against Alan Amory's Game Object
Model (GOM) (2007) through two user evaluations, LM-GM was superior in three aspects: providing detailed descriptions of
relationships between learning mechanics and game elements, accessibility and applicability, and enhancing user understanding
of how games promote learning. However, the authors recognize the need for enhanced and precise evaluation techniques for
their model components, especially those related to learning measurements.

In recent years, the game industry's swift advancement has given rise to increasingly sophisticated video games, enabling
educators to use them for teaching complex skills such as critical thinking and problem-solving. This progression has created a
demand for comprehensive frameworks for designing and evaluating game mechanics and pedagogical goals in game-based
learning environments. Addressing this need, Carvalho and colleagues (2015) presented the Activity Theory-based Model of
Serious Games (ATMSG), building upon and extending previous models. Applied in user evaluations of �ve educational games,
ATMSG demonstrated its superior capacity for precise evaluation of game mechanics and pedagogical elements compared to the
LM-GM model. This model's strengths lie in its ability to thoroughly analyze system components as the game progresses and
articulate the relationships between game components and learning goals for various stakeholders. Although more bene�cial
for expert users like game designers or researchers, the authors see the potential for ATMSG as a blueprint for creating analysis
tools in game-based learning environments.

Inspired by ATMSG's meticulous analytical abilities, we applied them to guide the design and development of our adaptive
logging system, a game-embedded analysis tool. Speci�cally, it assisted in determining what game content to log for learning
analytics and generating features for the predictive model.

2.2 Game logs application as learning measurements
Advanced technologies in education have popularized the use of logs for pro�ling application use across several domains,
including social computing environments (Ayzenberg et al., 2012; Goggins et al., 2010; Park & Cho, 2010), massive open
online courses (MOOCs) (Goggins et al., 2016; N. Li et al., 2015), computer-supported collaborative learning (CSCL) (Xing et
al., 2014; Goggins et al., 2011; Mart�́nez-Mońes et al., 2011), and 3-D virtual learning environments (Ángel F. Agudo-Peregrina
et al., 2014; Ma et al., 2015; Grover et al., 2017).

A robust logging system should record detailed, timestamped sequences of user-system interactions to unveil learning-
related usage patterns, supporting multi-level analytics. It should also be capable of real-time representation of user learning
progress when necessary (Ventura & Shute, 2013; Goggins et al., 2010; Hauge et al., 2014). Furthermore, the logging system
should evolve with the learning game, ensuring the capture of vital information on how game modi�cations affect learning
outcomes (Kim et al., 2019). Lastly, it should function unobtrusively, allowing uninterrupted user engagement with the system,
resulting in more accurate learning measurements (Loh et al., 2015).

The use of game logs for learning analytics has been widely explored within game-based learning. These logs are pivotal
for studying areas like subject-matter knowledge and skills (Nguyen et al., 2020; Emerson et al., 2020; Feng & Yamada, 2019),
complex competencies (Lee et al., 2019; Niemelä et al., 2020; Cloude et al., 2020; Wen et al., 2018; Sabourin et al., 2013;
Seaton et al., 2019), and performance assessment design (Gibson & Clarke-Midura, 2015; Westera et al., 2014; Loh & Sheng,
2015). When combined with external data from sources like eye-tracking or emotion detection, game logs provide enhanced,
more precise learning analytics (Lee et al., 2019; Emerson et al., 2020; Cloude et al., 2020).

Building on the established use of game logs in learning analytics, recent studies have applied advanced methods like
machine learning and reinforcement learning to analyze game data and achieve adaptive learning experiences in game-based
learning (GBL) environments (F. Chen et al., 2020; Cardia da Cruz et al., 2020; Rahimi et al., 2023). For example, Chen
et al. (2020) employed support vector machines and long short-term memory networks to predict learning outcomes from
students' game logs. Researchers have also used reinforcement learning to adjust game dif�culty in real time based on players'
performance, demonstrating potential in maintaining engagement and enhancing learning outcomes (Cardia da Cruz et al.,
2020; Rahimi et al., 2023). These AI-driven techniques highlight the potential of game logs in understanding and predicting
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learning outcomes, designing dynamic assessments, and creating adaptive learning experiences. However, limitations such as
limited exploration of behavioral features, small sample sizes, short-term evaluations, and simpli�ed dif�culty metrics hinder
real-world implementation. The authors encourage future research to investigate additional game log features to enhance
predictive accuracy and the effectiveness of reinforcement learning approaches in GBL environments.

Researchers have also explored various in-game features—representing behaviors, decision-making, and progress—to
analyze learning patterns across different expertise levels (D�́az-Raḿ�rez, 2020; F.-Y. Li et al., 2021; Liu et al., 2022). Examined
features include tool usage, navigation patterns, task progress, and earned rewards. Recent studies have focused on real-time
visualization of game logs to enhance educational outcomes. Vidakis et al. (2020) collected real-time data on student interactions
in ”ThimelEdu,” capturing behaviors like navigation and decision-making and visualizing data for educators to adapt teaching
strategies in real-time. Similarly, Calvo-Morata et al. (2020) used game analytics to validate ”Conectado,” a game designed
to raise cyberbullying awareness. They captured students' decisions and emotional responses, creating dashboards that offer
insights into engagement and empathy development. Real-time monitoring enables educators to re�ne interventions, tailoring
them to meet speci�c learning objectives and enhance educational impact. However, comprehensive studies combining these
features are scarce, necessitating more empirical research.

However, most studies use game logs in the context of speci�c environments, which limits their wider applicability. With the
growing prominence of game-based learning, it's important to develop universal standards for logging system design (Shoukry
et al., 2014; Ṕerez-Colado et al., 2022; Lu et al., 2023). Recent research highlights that standardized data collection methods
can greatly bene�t future research, such as facilitating cross-study comparisons and supporting cross-platform tool development
(Ángel Serrano-Laguna et al., 2014; Vidakis et al., 2020; Alonso-Fernández, Calvo-Morata, et al., 2021). The Experience API
(xAPI), a model proposed by Serrano-Laguna et al., is a high-level standard for logging system design. This model aims to
ensure that the data collected is ef�cient and effective for measuring learning goals across various game environments (Ángel
Serrano-Laguna et al., 2017). The xAPI model has inspired our design for high-level data collection processes.

Informed by the frameworks of xAPI and ATMSG, we designed the high-level data structure and determined the �ne-grained
content to capture. Yet, a disconnect remains between the data collected and the learning goals we aim to measure or predict
(Jeon et al., 2023). A framework that guides the implementation of performance assessments, seamlessly integrated with the
game progression, can bridge this gap (V. J. Shute & Rahimi, 2021; Udeozor et al., 2024). Such a framework ensures that the
collected data can accurately and unobtrusively measure the targeted learning outcomes as the game unfolds. As reviewed in the
subsequent section, previous research has created, developed, and validated frameworks for implementing stealth assessments in
game-based learning environments. However, these studies have also acknowledged the need for further empirical evaluations
to validate these frameworks in diverse educational contexts (V. J. Shute et al., 2016; Min et al., 2020; Georgiadis et al., 2019;
V. J. Shute & Rahimi, 2021; Udeozor et al., 2024).

2.3 Stealth assessment in game-based learning environment
As society evolves, today's youth must master complex competencies, including 21st-century skills (Romero et al., 2015),
to keep pace with the modern world. However, teaching these skills and assessing students' progress presents signi�cant
challenges. Emerging technologies offer solutions by enabling the development of embedded assessments to augment learning
processes. Unlike traditional assessments, such as paper-based exams, embedded assessments offer many bene�ts: (1) They
unobtrusively gather continuous, multi-faceted learner data, providing objective, comprehensive results without disrupting
learning or creating test anxiety. (2) Utilizing machine technologies, they provide real-time scores based on learner actions
and progress, offering quantitative feedback to improve learning. (3) By integrating into learning systems like game-based
environments, they measure learning in context and in real-time, unlike traditional pre- and post-learning assessments. This
immediacy accurately re�ects learner progress, making these 'stealth assessments' a valuable tool for educators and researchers.

Göbel and colleagues (2009; 2013), building on their early research in story-based edutainment and serious games, put forth
a stealth assessment framework for story-based digital educational games (DEGs), named Narrative Game-based Learning
Objects (NGLOB). They validated this framework with two computer-based games. However, its use has declined recently,
possibly due to the constraints of the narrative genres and the speci�c needs of game-based learning environments where their
methods were applied.

Shute and colleagues (2011a), unrestricted by the narrative game genre, conducted various studies on a stealth assessment
model in game-based learning environments, utilizing the Evidence-Centered Design approach (ECD) (Mislevy et al., 2003).
This model was validated across diverse educational games, assessing competencies such as mathematical skills, problem-
solving, conscientiousness, calculus abilities, and creativity (V. Shute et al., 2017; V. J. Shute et al., 2016; Moore & Shute,
2017; Smith et al., 2019; V. J. Shute & Rahimi, 2021). The ECD model encompasses three key components: 1)Competency
Model (CM): De�nes the knowledge and skills to be assessed. 2)Evidence Model (EM): Identi�es in-game behaviors or
progress revealing the competencies and their statistical relationship with CM variables. 3)Task Model (TM): Outlines
in-game situations or quests through which students demonstrate their competency progress.
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These components enable practitioners to examine learning behavior patterns and estimate competence levels in a timely
manner. Shute's studies primarily focus on discerning relationships between different in-game behavior-derived indicators
and assessed competencies using only Bayesian Networks (BN). BNs effectively visualize complex relationships, including
time factors, in a manner that keeps data useful and manageable (Champion & Elkan, 2017; Heine, 2021; Belland et al., 2017;
Mouri et al., 2016). However, developing BNs is labor-intensive, time-consuming, and costly, to ensure accurate representation
of learning in the �nal structure. Furthermore, even a robust BN, based on an appropriate prior distribution, usually requires
substantial data for validation. The outcomes may be too speci�c to the experiment, limiting their applicability in other
game-based learning environments.

Exploring beyond BNs, Grover et al. (2017) applied the ECD framework to measure computational thinking (CT) in
block-based programming environments like Alice, combining hypothesis-driven methods with data-driven learning analytics.
Their approach integrates real-time data from student programming activities with pre-de�ned indicators of CT skills, such as
debugging, use of conditionals, and iterative design, to enhance the accuracy of assessments and provide formative feedback
to learners. This hybrid framework illustrates another application of ECD beyond traditional game-based learning, where it
supports stealth assessment in educational programming environments.

Furthermore, Lester and colleagues examined the use of machine learning models, such as Random Forest, Support Vector
Machine, and Recurrent Neural Networks, for stealth assessments within game-based learning environments (Akram et al.,
2018; Min et al., 2020; Henderson et al., 2020; Gupta et al., 2021; Henderson et al., 2022). They identi�ed in-game behaviors
linked to targeted knowledge and skills, integrating these models into the ECD framework. This resulted in novel stealth
assessment frameworks with various bene�ts: streamlining data preprocessing (Min et al., 2020), enabling the operation of
stealth assessments in domains and educational content where prior data and labels are unavailable (Henderson et al., 2022), and
infusing diverse data types (Henderson et al., 2020). However, these models' complexity hinders interpreting how individual
indicators predict learning outcomes.

Addressing the limitations of BNs (Champion & Elkan, 2017; Heine, 2021; Belland et al., 2017; Mouri et al., 2016), and
the challenges of other modeling approaches in identifying game-speci�c behaviors related to learning (Akram et al., 2018; Min
et al., 2020; Henderson et al., 2020; Gupta et al., 2021; Henderson et al., 2022), Georgiadis and colleagues (2019) developed a
computational prototype to conceptualize various approaches to stealth assessment. This work uses simulated data to verify
their prototype and explore numerous modeling techniques to inform future stealth assessment designs within serious games.
It offers a comprehensive range of potential computing approaches for stealth assessment researchers. However, this work's
applicability is limited due to the absence of a speci�c game-based learning system, a human evaluation environment, and a
clear connection between these models and learning outcomes.

2.4 Gaps in the Literature
Despite signi�cant advancements in game-based learning analytics and the development of various conceptual models and
frameworks, several gaps remain in the literature. Existing models, such as those proposed by De Freitas et al. (2006), Gunter et
al.(2006), and Arnab et al. (2015), face limitations like restricted applicability, lack of transformation between pedagogical and
game elements, limited learning contexts, and the need for enhanced evaluation techniques—particularly concerning learning
measurements. Advanced analytic methods, including machine learning and reinforcement learning, have shown potential
in utilizing game logs for adaptive learning experiences. However, their real-world implementation is hindered by limited
exploration of behavioral features, small sample sizes, short-term evaluations, and simpli�ed dif�culty metrics.

Additionally, there is a scarcity of comprehensive empirical studies that combine various in-game features to analyze learning
patterns, necessitating more research in this area. The lack of universal standards for logging system design further limits
the generalizability of �ndings across different game-based learning environments. Frameworks guiding the implementation
of performance assessments, such as stealth assessments integrated within game progression, require additional empirical
validation in diverse educational contexts. Complex modeling approaches like Bayesian Networks and advanced machine
learning models, while useful, pose challenges in terms of development effort, interpretability, and applicability.

Therefore, there is a critical need to develop accessible, learning-centered frameworks that facilitate the transition from raw
game logs to meaningful feature sets and computational models. To address these gaps, we present our study involving Mission
HydroSci (MHS), a comprehensive game-based learning environment designed for middle school students. By applying our
proposed framework for constructing learning prediction models within MHS, we aim to enhance the accuracy of measuring
and predicting targeted learning outcomes, thereby bridging the gap between data collection and educational objectives in
game-based learning environments. This approach not only validates our framework but also contributes to the broader goal of
making advanced analytics more accessible and effective in educational games.

3. Game Context and Data Collection
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3.1 Mission HydroSci
MHS is a comprehensive game-based learning curriculum conceptualized as a 3D transformational role-play platform for
middle school students (see online Appendix B for detailed information on game content). Within this interactive context,
students play the role of novice scientists, exploring and managing a remote planet's water systems and topography with the
overarching objective of utilizing these resources for human survival. MHS encompasses numerous assistive tools, facilitating
the learning of decision-making processes, puzzle-solving techniques, and scienti�c argumentation. Integral to MHS is a
logging system conceived and developed with the game, following the ATMSG and xAPI frameworks.

To identify the content to be captured during gameplay, we applied the ATMSG framework to deconstruct and analyze
gameplay and learning activities, ensuring that each log event aligns with the framework. The ATMSG framework's hierarchical
structure—encompassing gaming, learning, and instructional activities—was instrumental in de�ning which actions and events
should be logged in MHS. This systematic categorization of actions, tools, and goals enabled us to capture meaningful data on
player engagement and learning outcomes.

• Gaming Activities: Player interactions with the game were mapped to speci�c events, such as movement, trigger, and
quest/task-related events. Movement events capture details like direction (forward, left, right, back), state (start, end),
and navigation tool use (e.g., hoverboard). These events monitor player exploration and spatial engagement. Trigger
events log interactions with objects, recording object ID, action type (e.g., Lift, Drop, Press), and object state changes,
re�ecting problem-solving approaches. Quest and task events track progress, logging when players initiate or complete
quests or tasks.

• Learning Activities: Actions aligned with learning objectives were logged through events capturing scienti�c argumen-
tation, decision-making, and knowledge application. Argumentation events log players' use of the argumentation engine,
capturing session openings, engagement with nodes, and argument construction, providing insights into critical thinking
and reasoning. Dialogue events track the start and end of dialogues and player choices, offering data on how players
engage with educational narratives and assess understanding.

• Instructional Activities: Instructional elements, including in-game and teacher-led activities, were tracked through tool
events and hotkey use, monitoring players' access to support tools and the impact on their performance. Tool events, such
as the argumentation engine and AI companion tools, provide insight into tool utilization, while hotkey events reveal
player �uency with controls and resource navigation strategies.

The ATMSG framework effectively aligned game design with educational objectives. Each quest or challenge was
designed to support learning goals, such as understanding water �ow dynamics or properties of water-soluble materials. The
logging system captured relevant data—such as argumentation, dialogue choices, and tool use—offering insights into players'
problem-solving, decision-making, and concept application.

For the collection and storage of this content in data statements within remote servers, such as a Learning Record Store
(LRS), for real-time applications and advanced analysis, we applied the xAPI framework. This framework provides a technical
standard for tracking and recording behavioral trace data within serious games. By mapping ATMSG components to xAPI
statements and making necessary adjustments to align with MHS and our research objectives, we designed and developed the
embedded logging system. To evaluate the effectiveness of this logging system, we conducted an empirical study using data
collected during the �rst �eld test of MHS (Lu et al., 2023)

The MHS curriculum is organized into six units. Unit 1, a tutorial, introduces navigation, in-game tools, and a system for
scienti�c argumentation. Unit 2 focuses on topography, teaching students to �nd in-game teammates and compare watershed
sizes. Our research primarily examines Unit 3, which instructs students on water �ow and the properties of water-soluble
materials. We have deliberately excluded data from other units in the current study. This decision is premised on the fact that
subsequent units do not in�uence a student's performance in Unit 3. Focusing on Unit 3 also presents a manageable scope
for furthering stealth assessment research in line with our research questions. Our analysis of Unit 3 is intended to lay the
groundwork for future investigations into stealth assessments, both for our subsequent work and for other researchers in the
�eld.

3.2 Data collection
The second �eld test for MHS was conducted over two weeks in the spring semester of 2019. The participating teachers, drawn
from thirteen middle schools across nine school districts, were required to have at least two class periods from 6th to 8th grade.
These schools were situated in mid-sized cities and small rural communities, and the student sample comprised 1,110 students
of varied ethnicities and genders. 806 students from 35 classes went through MHS, as a game-based curriculum. Among those
students, 632 of them completed pre-and post-tests for all constructs, qualifying for the analytic sample.
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We implemented three distinct assessment instruments for the pre-and post-tests. These included student tests of effect
toward science and technology (MAST) (Romine et al., 2017), water science content knowledge (Reeves et al., 2020), and
scienti�c argumentation (Reeves et al., 2020). The tests were administered via Qualtrics, an online assessment platform. The
primary objective of this study was to construct a stealth assessment, informed by the ECD framework, to evaluate students'
learning outcomes associated with Unit 3's curriculum related to water science content knowledge. This evaluation was based
on the features extracted from the students' in-game logs. These logs, saved on a remote MongoDB database, were transformed
into data frames via the R software for additional analysis and model construction. Following a thorough data cleaning process
and trimming to eliminate incomplete records, the �nal dataset comprised 354 students with comprehensive log records and
corresponding assessment scores.

4. Framework-Supported Pipeline for Valid Stealth Assessment Implementation

This section outlines our approach for feature set identi�cation, which we used for training and evaluating our computational
models. We also detail integrating the Evidence-Centered Design (ECD) framework in af�rming our stealth assessment
application within MHS. Feature engineering, a method for pinpointing potent learning predictors from vast volumes of student
gaming data, is crucial for developing durable, interpretable prediction models (Owen & Baker, 2020; Guyon & Elisseeff, 2003;
Sao Pedro et al., 2012; Fogarty, 2006). Essentially, MHS feature engineering transforms raw data into meaningful information
through the fusion of expert judgment and iterative mathematical operations, adapting continually with curriculum and game
design based on distinct learning goals. To optimize our �nal feature set, we implemented recommendations from (Zheng &
Casari, 2018; Butcher & Smith, 2020) and used the feature engineering framework, Integrated Design of Event-stream for
Analysis (IDEFA) (Owen & Baker, 2020), to guide our process.

4.1 Overview of the IDEFA Framework
The IDEFA framework is a systematic process for creating and re�ning data features from event-stream data, with the ultimate
goal of producing robust models for behavior prediction. It consists of several key phases: data design and collection, based
feature aggregation, feature engineering, and iterative analysis. While the IDEFA framework includes data design and collection
as a core element, in this study, we employed a different way to design and develop the integrated logging system within MHS
using the ATMSG and xAPI frameworks, as described in the previous section.

Although we did not follow IDEFA's guidance for data collection, the remaining three phases - base feature aggregation,
feature engineering, and iterative analysis - were fully integrated into our work�ow, as outlined below: (1)Base Feature
Aggregation: Once raw data was collected through our customized logging system, we followed the IDEFA framework's
principles to identify and aggregate key features from the event-stream data. (2)Feature Engineering:We applied mathematical
operators to transform base features into new variables that better-captured player behaviors, ensuring the data was suitable for
predictive modeling. (3)Iterative Analysis: Using IDEFA's iterative process, we tested and re�ned the engineered features,
optimizing our models for predicting learning outcomes.

By combining the �exibility of our logging system with the structured processes from IDEFA for feature generation, we
ensured that the features generated were optimized for predicting our targeted learning objectives.

4.2 Stealth Assessment Goal Set-up
According to the IDEFA framework, the initial step in implementing a stealth assessment is to establish a clear goal or research
question. This involves de�ning the speci�c learning outcomes that the stealth assessment aims to measure. In this study, we
chose to use the sum of three post-assessment scores to quantify students' water science knowledge in MHS Unit 3. Below, we
�rst justify the use of the summed scores both conceptually and statistically.

First, the assessment designer con�rmed that these three items evaluate distinct but interconnected aspects of the water �ow
dynamics topic in Unit 3. To statistically validate their unidimensionality, we conducted both Exploratory Factor Analysis
(EFA) and Con�rmatory Factor Analysis (CFA) (Widaman & Helm, 2023). The EFA results indicated that the �rst factor
had an eigenvalue of 2.5, explaining 83% of the total variance, while the second factor had an eigenvalue of 0.4, suggesting
that a single factor captures the construct suf�ciently. The factor loadings for each item were 0.73, 0.85, and 0.71, further
supporting the unidimensional structure. CFA demonstrated a good model �t, withc 2(2) = 4:23(p = 0:12), RMSEA= 0:06,
andCFI = 0:93. The Cronbach's alpha (Tavakol & Dennick, 2011) of 0.79 also exceeded the acceptable threshold of 0.7,
con�rming the reliability of aggregating the scores. More details on the assessment items and analysis can be found in Appendix
E.

Given the statistical con�rmation of unidimensionality, we chose to sum the three item scores for several reasons: (1)
Enhanced Privacy: Using the sum of assessment scores as the dependent variable reduces data granularity. Given that
participants input their real names into our logging system, individual item scores could reveal speci�c strengths and weaknesses,
which might be sensitive information. (2)Comprehensive Measurement: Each item assesses a different yet interconnected
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aspect of water �ow dynamics. By summing the scores, we create a broader measure of the student's overall understanding of
these interrelated concepts. The factor analysis results further validate that the three items contribute to a uni�ed measurement,
supporting our decision to combine them. (3)Increased statistical Power: Summing the three items increases the variability
in the data, which enhances the statistical power of our analysis. A greater range of scores allows for more robust detection
of signi�cant relationships or differences in student learning. In contrast, analyzing only one item would limit the variability
and reduce our ability to uncover meaningful patterns. (4)Improved Reliability : Summing the scores across multiple
items improves reliability in two ways: by reducing item-speci�c bias and balancing random errors. A single item may
disproportionately re�ect one aspect of the construct or vary in dif�culty. Summing the items helps to mitigate this issue,
ensuring a more balanced assessment of student knowledge. Additionally, error averaging ensures that random errors, such as
misunderstanding a question or a momentary lapse in concentration, do not overly in�uence the �nal score. Summing scores
tends to cancel out these random errors, leading to a more stable and reliable estimate of overall performance.

To determine whether students demonstrated signi�cant learning outcome improvements after playing MHS, we conducted
a paired t-test (Student, 1908) on the summation of pre- and post-assessment scores relevant to water science knowledge
in MHS Unit 3. The results indicated signi�cant score improvement (M = 1.447, SD = 0.971 for pre-assessment and M =
2.009, SD = 0.961 for post-assessment), with a t-value (df = 353) of -9.094 and a p-value of 0.0. Following this analysis, we
categorized student performance into two groups: high performers, de�ned as students with post-test scores greater than or
equal to 2, and low performers, de�ned as those with scores lower than 2.

4.3 Feature Engineering and Selection
4.3.1 Base Feature Aggregation
According to the IDEFA framework, the initial step in the feature generation process is ”base feature aggregation.” This step
involves identifying variables or features from the base event-stream data, or raw log data, that are signi�cant for analysis and
then aggregating values for each feature within a de�ned game walkthrough timeframe or window.

A robust feature set should comprehensively cover the investigated data, with each feature strongly correlated to the
target variable, and should minimize overlap or high correlation between features to enhance model interpretability (Owen &
Baker, 2020). Following these principles, we established three high-level feature categories: gameplay behaviors, embedded
assessment scores, and external information. These categories were determined through a full MHS team consensus, re�ecting
various aspects of students' information. Detailed explanations of each category are provided below: (1)Gameplay behavior:
This category describes students' trajectories, actions, and choices in the gaming procedure. (2)Embedded assessment scores:
This category contains in-game achievement markers representing signs of learning progress about subject-matter knowledge.
(3) External information : This category includes features collected outside the game. Such as pre- and post-assessment scores,
demographic information and sensor streams (i.e., eye-tracker, emotion detector, motion sensors).

Following the initial aggregation, we conducted an intermediate categorization, further subcategorizing each feature
category. For gameplay behaviors, inspired by our previous study (Lu et al., 2023), we identi�ed nine subcategories with high
predictive power: 1) The size of the explored game area; 2) The speed of task completion; 3) Tool using status; 4) In-game item
interactions; 5) Argumentation construction; 6) Event type shares; 7) Dialogue reading behaviors; 8) Game replay times; 9)
Other information (e.g. which instructor guided the student).

For embedded assessment scores, we created two subcategories according to whether the score measures learning outcomes
in the current unit or the previous units: 1) Previous embedded assessment scores – scores measuring the learning outcomes of
subject-matter knowledge marked by game logs collected from previous units (Unit 1 and 2 in this study). 2) Current embedded
assessment scores – scores having the same function as described above but collected in the current unit (Unit 3 in this study).

For external information, we divided it into three subcategories based on our prior work demonstrating predictive validity
and the aspects of students' information collected through external sources: 1) Demographic information, 2) Assessment scores,
and 3) Other external information. In this study, we primarily focused on assessment scores within the external information
category, using students' pre- and post-assessment scores related to water science knowledge in Unit 3 of MHS.

4.3.2 Feature Engineering
Following the ”base feature aggregation” process, we proceeded with feature engineering using mathematical operators.
This step involved iterative feature engineering and selection procedures. Within each subcategory, we engaged in several
brainstorming sessions with team members to create new features based on those identi�ed in the previous step. We utilized
mathematical functions (e.g., summation, ratio, multiplication, descriptive statistics) and data transformation techniques (e.g.,
discretization, one-hot encoding, and scaling methods).

This iterative process involved extensive collaboration among team members, during which we brainstormed potential new
features based on the identi�ed base features. Each newly engineered feature was evaluated for its relevance and contribution to
understanding students' learning behaviors. The resulting features provided deeper insights into students' decision-making
processes, engagement levels, and learning trajectories within the game.
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4.3.3 Iterative Analysis
We then conducted a systematic iterative feature selection procedure by examining each feature's variance and its correlation
with the targeted learning outcome, as de�ned in the ”Stealth Assessment Goal Set-Up” section. Given that our dependent
variable is categorical, with ”high-performance” and ”low-performance” categories, and our independent variables include
both numeric and categorical features, we employed the Mann-Whitney U test (Mann & Whitney, 1947) for numeric features
and Fisher's exact test (Fisher, 1935) for categorical features to determine signi�cant correlations with the targeted learning
outcome. Features included in the �nal feature set met several criteria: they exhibited suf�cient variance (interquartile range
greater than 0.1), had a correlation value exceeding a predetermined validity threshold (p-value for the statistical test less
than 0.1 along with corresponding Effect Size (Glass, 1966; Cramér, 1999) value larger than 0.1), and provided adequate
interpretability for generating insights after model �tting. The �nal feature set includes 57 features.

Appendix A provides detailed descriptions of each feature within the �nal feature set. Additionally, Appendix C provides
more comprehensive descriptions of each feature subcategory and corresponding exploratory analyses.

4.4 Model Selection
Our �nal feature set, developed through the aforementioned processes, exhibits the following characteristics: (1)High-
Dimensional and Diverse: The set comprises a total of 57 features encompassing a wide variety of types, including numeric
features (e.g., object interaction frequency, tool usage frequency, choice node hovering frequency) and categorical features (e.g.,
teacher IDs, explored area size, argumentation performance). (2)Non-Linear Relationships: Many relationships between
our features and learning outcomes are likely non-linear. For instance, tool usage frequencies or event-type shares may have
complex, non-linear effects on post-test learning outcomes. (3)Class Imbalance: The dataset exhibits class imbalance (e.g.,
a greater number of high-performing students compared to low-performing students), which needs to be addressed to avoid
biased predictions. (4)Noise and Outliers: The feature set includes noisy data and potential outliers, such as rare in-game
item interactions or atypical explored area sizes that are not representative of most students. (5)Sparse and Low-Frequency
Features: Some features, such as dialogue triggering frequencies or speci�c object interaction behaviors (e.g., sensor usage
frequency, crate delivery success), may be sparse or occur infrequently. (6)Complex Feature Interactions: The feature set
likely contains complex interactions between features, such as how dialogue reading behaviors and argumentation construction
speed combine to predict learning outcomes.

Based on these characteristics, we selected the following algorithms for predicting the desired learning outcomes: Bayesian
Generalized Linear Model (BGL) (Albert, 1988), Distance Weighted Discrimination with Polynomial Kernel (DWD) (J. S Mar-
ron & Ahn, 2007), Random Forest (RF) (Breiman, 2001), Support Vector Machines with Class Weights (SVM) (Huang &
Du, 2005), and Model-Averaged Neural Network (NN) (Abrahart & See, 2000). Although these algorithms employ different
approaches, they are all capable of effectively handling feature sets with the characteristics mentioned above. Each algorithm
not only shares common capabilities but also offers unique advantages, which justify their inclusion in this study. Utilizing
multiple algorithms can generate more validated prediction results, and the �ndings from each can provide supplementary
support for the others. Key unique advantages of each selected algorithm that contribute to the construction of our prediction
model are brie�y described as follows.

ForDWD, this algorithm establishes decision boundaries that avoid overemphasizing outliers or disproportionately favoring
the majority class, enhancing its ability to predict outcomes for underrepresented low-performing students. Additionally,
DWD's polynomial kernel effectively captures complex interactions between features derived from student actions (e.g., tool
usage, task completion speed, argumentation construction), enabling a robust distinction between high and low performers.
In regards toSVM, By employing class weights, SVM addresses class imbalance by assigning greater importance to the
minority class (low performers), ensuring that its in�uence is not overshadowed. This approach re�nes the decision boundary
and improves prediction accuracy for underrepresented groups. Furthermore, SVM's nonparametric nature makes it resilient
to violations of distribution assumptions and suitable for smaller sample sizes, which is common in educational datasets.
RegardingNN, The model-averaging technique in neural networks reduces the risk of over�tting, particularly in a feature set
combining categorical and continuous data. By integrating predictions from multiple neural networks, the model enhances
generalization across diverse learning patterns. This approach is particularly effective when certain features, such as gameplay
strategies or pre-test performance, risk skewing predictions. The averaging mechanism ensures balanced predictions and
applicability to various student pro�les.

For BGl, the Bayesian framework of BGL is particularly effective in managing uncertainty inherent in features such as
interaction frequencies or completion times. It also allows the integration of prior knowledge through the use of informative
priors. For example, if prior research or domain expertise suggests that features representing pre-knowledge and performances
from earlier game tasks (e.g., pre-assessment scores, embedded scores from previous units) are related to the target learning
outcome, this information can be incorporated into the model. A key strength of BGL is its ability to generate interpretable
probabilistic predictions, providing not only an understanding of the in�uence of various features but also the model's con�dence
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in its predictions. This interpretability is critical in educational settings, where actionable insights based on model predictions
are essential. As forRF, Random Forests are particularly well-suited for handling datasets with mixed feature types, minimizing
the need for extensive pre-processing. By constructing multiple decision trees based on random subsets of features, RF reduces
over�tting and manages high-dimensional data effectively. Its ability to handle class imbalance by averaging results across
many trees improves representation of minority classes, and its robustness to missing data ensures consistent performance even
with incomplete game logs.

To generate the necessary features from raw logs, conduct the analytical process, and construct the machine learning
classi�ers described above, we utilized R and several R packages. Notably, we employed the ”Caret” package, developed by
Max Kuhn Kuhn (2019), which provides a comprehensive suite of functions for creating predictive models.

4.5 Evidence-Centered Design Framework Mapping
According to the descriptions regarding each component within the ECD framework within the Literature Review section, we
mapped our study to the framework shown in Table 1.

ECD Component Speci�c Content Mapped to Our Study

Competency model
We used the summation of three post-test assessment scores measuring students' water science
knowledge in MHS Unit 3 and categorized the summation score into high and low performers
based on whether the score is smaller than 2 or not.

Task model
For this component, we include twelve quests until the end of MHS unit 3. Each quest's detailed
description can be found in online Appendix B.

Evidence model
In this model, we involved a �nal feature set containing totally 57 features as the learning
evidence and 5 machine learning models to help us solve our learning outcome prediction
problem.

Table 1. De�ning speci�c content for each component with ECD framework mapping to our study.

4.6 Model Training Preprocessing
As described in the ”Stealth Assessment Goal Set-Up” section, our target or dependent variable consists of two classes: high
performers and low performers. Due to the criteria used to categorize these classes, the variable exhibits an imbalanced class
distribution, with 251 high and 103 low performers. This imbalance could signi�cantly hinder model performance Guo et al.
(2008); Elrahman & Abraham (2013); Buda et al. (2018). To address this issue, we employed subsampling techniques Kaur
et al. (2019), such as down-sampling, up-sampling, Synthetic Minority Over-sampling Technique (SMOTE), and Random
Over-Sampling Examples (ROSE). Each method was applied to the training dataset and evaluated using the testing dataset,
with only the most effective methods being reported. Speci�cally, SMOTE was adopted for the BGL, SVM, and NN models,
while up-sampling was selected for the RF and DWD models. These techniques were chosen for their ability to enhance
the proportion of the minority class, thereby improving the model's predictive accuracy for the low performers. Detailed
descriptions of the subsampling applications are provided in online Appendix D.

4.7 Model Inference
In an ideal scenario, stealth assessment would reliably indicate students' learning outcomes throughout game phases, enabling
instructors to intervene promptly. However, challenges and gaps exist that prevent stealth assessments from functioning as
expected. A promising initial step toward bridging these gaps is identifying potential indicators that re�ect students' behavior
patterns at different learning outcome levels. Model inference is a valuable tool for identifying these indicators, as it helps
elucidate the impact of each feature on learning outcomes. However, many machine learning models are “black-box” models,
prioritizing prediction accuracy over interpretability due to numerous parameters and nonlinear transformations, which tend to
obscure the relationship between the engineered features and the intended learning outcomes within the game design (Min et
al., 2020). Fortunately, several methods help interpret black-box models, such as feature importance rates (Breiman, 2001),
partial dependence plots (PDPs) (Molnar et al., 2020), Shapley Additive Explanations (SHAP) (Lundberg & Lee, 2017), and
Local Interpretable Model-agnostic Explanations (LIME) (Ribeiro et al., 2016).

After investigation, we decided to use BGL as a surrogate model to interpret the RF model, which achieved the highest test
accuracy rate based on our dataset. The surrogate model approach involves training a simpler, interpretable model (such as a
linear model or decision tree) to approximate the predictions of a more complex, black-box model, thereby providing insights
into the black-box model's decision-making process (Guidotti et al., 2018; Molnar et al., 2020). Speci�cally, we �rst used
the trained RF model to generate predictions on the training dataset. Then, we constructed a new dataset where the features
remained the same as the original dataset, but the target variable was replaced with the predictions from the RF model. The �nal
step was to train a BGL model on this new surrogate dataset to learn the mapping between the features and the RF predictions.
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In addition to BGL's demonstrated effectiveness in predicting learning outcomes with our feature set (as shown in Table 2
and corresponding descriptions), several key reasons informed our choice to interpret the black-box model using BGL: (1)
Probabilistic Interpretations : BGL provides a probabilistic framework, offering insights into the uncertainty and variability of
predictions, which is valuable for understanding con�dence intervals and the reliability of model outputs. Methods like feature
importance and PDPs typically offer point estimates without quantifying uncertainty. (2)Prior Information Incorporation :
BGL allows the inclusion of prior information about parameters, guiding the model to plausible solutions, especially when
data is scarce or noisy. Other methods like SHAP and LIME do not directly incorporate prior knowledge, potentially resulting
in less robust interpretations. (3)Regularization and Multicollinearity Management: BGL incorporates regularization
through priors, helping manage multicollinearity and over�tting. Feature importance and PDPs do not address multicollinearity,
which can skew interpretations. (4)Simplicity and Communication: The linear structure of BGL makes it easy to interpret
and communicate results to non-technical stakeholders. Coef�cients have a direct and intuitive interpretation, unlike SHAP
values and LIME explanations, which can be complex. Feature importance scores are easy to understand but lack detail on
feature interactions. (5)Inference and Predictive Distribution: BGL provides not just point estimates but entire predictive
distributions, crucial for understanding the full range of potential outcomes and their probabilities. Other methods typically
focus on individual predictions or feature contributions without offering a comprehensive view of predictive distributions.

5. Results
Having constructed the framework-supported pipeline to predict MHS learning outcomes, we evaluated its ef�cacy by reviewing
the performance of the machine learning models.

5.1 Model Training and Results
To assess the predictive ability of student learning outcomes, we divided our 57-feature dataset into three groups: embedded
assessment scores, in-game behaviors, and full features. The �rst group contains 10 features denoting in-game learning progress,
the second contains 45 features representing individual in-game actions, and the third combines all previous features with
additional information gathered outside the game, such as the summation of pre-test scores and instructor IDs.

Each model algorithm was trained using the three feature groups. Prior to training, features underwent Yeo-Johnson
transformation (Yeo & Johnson, 2000), followed by centering and scaling. We partitioned the data, allocating 80% of the
samples for training and 20% for testing. The training process involved 30-fold cross-validation, repeated 30 times, with
hyperparameters tuned via greedy search across 30 randomly formed combinations. Model evaluation was conducted using
accuracy, sensitivity, and speci�city metrics derived from the confusion matrix, to assess the models' ability to predict high and
low performers' learning outcomes. Table 2 provides detailed information on model performance.

Embedded Assessment Scores In-game Behaviors All Features
Accuracy Sensitivity Speci�city Accuracy Sensitivity Speci�city Accuracy Sensitivity Speci�city

BGL 0.64 0.86 0.1 0.69 0.84 0.3 0.84 0.88 0.75
DWD 0.71 1 0 0.7 0.94 0.1 0.81 0.84 0.75
RF 0.61 0.78 0.2 0.71 0.9 0.25 0.86 0.96 0.6
SVM 0.76 0.9 0.4 0.73 0.9 0.3 0.83 1.0 0.4
NN 0.76 0.9 0.4 0.63 0.78 0.25 0.81 0.86 0.7

Table 2. Model prediction performance. The bolded numbers represent the highest values within each of the performance
measurement metrics – accuracy, sensitivity and speci�city – within each of the three different feature sets.

As indicated in Table 2, our �rst �nding is that all �ve models, when utilizing the dataset with all features, achieve accuracy
metrics exceeding the 80% benchmark, which is considered a good prediction accuracy rate within educational contexts (Bird
et al., 2021).

For each feature set, the results reveal that the SVM and NN algorithms offer the best test accuracy and speci�city rates,
while the DWD algorithm provides the best sensitivity rate for the feature set of embedded assessment scores. When using the
feature set of in-game behaviors, SVM produces the best test accuracy and speci�city rates, DWD provides the best sensitivity
rate, and BGL matches the speci�city rate of SVM. With the full feature set, RF leads in test accuracy, both BGL and DWD
achieve the highest speci�city rate, and SVM offers the highest sensitivity rate.

Table 2 compares the three different feature sets and shows that the accuracy rate using all features is signi�cantly higher
than that using the embedded assessment scores and in-game behaviors feature sets. Additionally, the speci�city rate using all
features is signi�cantly improved compared to the embedded assessment scores and in-game behaviors feature sets. To validate
these differences, we conducted the Kruskal-Wallis (KW) test (Kruskal & Wallis, 1952) along with Dunn's (D) test (Dunn,
1964) for post-hoc pairwise comparisons.
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Regarding the accuracy rate, the KW test yielded a signi�cant difference among feature sets (c 2(2) = 9:51, p-value = 0.01),
and the D test indicated that the accuracy using all features was signi�cantly higher than that using embedded assessment
scores (p-value = 0.018) and in-game behaviors (p-value = 0.008). For the speci�city rate, the KW test also revealed signi�cant
differences (c 2(2) = 8:77, p-value = 0.01), and the D test showed that speci�city using all features was signi�cantly higher
than that using embedded assessment scores (p-value = 0.014) and in-game behaviors (p-value = 0.017). The differences in
sensitivity rates across the three feature sets were not statistically signi�cant, as con�rmed by the signi�cance tests mentioned
above.

From the analysis, it is evident that the feature set with all features provides better prediction outcomes. However, speci�city
rates are generally lower than accuracy and sensitivity rates, indicating a weaker model capacity for identifying low performers.
Overall, RF yields the highest accuracy rate with the full feature set. Notably, BGL, with all features, offers the most balanced
model performance, with all measures surpassing the threshold of 75%. The effectiveness of lower-complexity models like
BGL, as noted by (Zheng & Casari, 2018), underscores the effectiveness of our feature engineering and model selection
processes.

In summary, the results validate the stealth assessment framework for MHS and underscore the value of combining multiple
evidence sources (e.g., in-game behaviors and embedded assessment scores) to improve predictive accuracy. The approach
integrates theIDEFA framework for feature generation, machine learning models tailored to the feature set, and theECD
framework to ensure the relevance of students' in-game activities for predicting learning outcomes. These �ndings suggest
the potential for generalizing this framework to other digital learning environments. However, challenges remain, such as
lower speci�city in detecting low performers and insuf�cient representation of subtle learning behaviors. Further iterative
re�nements, guided by theiterative design paradigmwithin the ECD framework, are needed to enhance model accuracy and
generalizability, as discussed inSection 6.1.

5.2 Model Inference Results
Using BGL for model inference provides insight into the construction and effect of each feature on the target variable. This
analysis yields each feature's estimated coef�cient and highest density interval (HDI), revealing the nature and signi�cance
of each feature's in�uence on learning outcomes. Detailed inference results are in Table 3. We summarized key �ndings as
follows:

• Map Exploration: Larger map exploration sizes are associated with lower probabilities of high-level learning outcomes,
especially in areas with major quests. This �nding suggests that excessive exploration may lead to distractions or
inef�cient use of time, detracting from focused learning efforts.

• Task Completion Time: Prolonged task completion times correlate positively with high-level learning outcomes. This
implies that students who spend more time on tasks tend to engage more deeply and comprehensively, leading to better
learning outcomes.

• Tool Usage:Frequent use of topographic maps, quest descriptions, background information, and game help, coupled with
slower average chat log use, is associated with high-level learning outcomes. These tools facilitate students' understanding
and problem-solving within the game. In contrast, frequent use of chat logs and side-quest-related information correlates
with lower learning outcomes, suggesting these tools may distract students from their major learning objectives.

Category Feature Name Coef�cient HDI Signi�cance
mainMapSize -0.6 [-1.7, -0.09] Yes

Map exploration
dungeonMapSize -0.4 [-0.9, 0.04] No

Task completion taskAveSpeed 0.6 [0.14, 0.98] Yes
mapFreq 0.3 [-0.4, 1.04] No
chatFreq -0.9 [-2.03,0.18] No
crashFreq -0.6 [-1.36, 0.2] No
questFreq 0.6 [0.12,1.07] Yes
backingFreq 0.4 [-0.32, 1.19] No
helpFreq 0.5 [0.11, 0.97] Yes
mapSpeed -0.2 [-0.61,0.15] No
chatSpeed 1 [-0.07, 2.14] No
crashSpeed -0.2 [-0.98, 0.53] No
questSpeed -0.1 [-0.56, 0.35] No
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Category Feature Name Coef�cient HDI Signi�cance
backingSpeed -0.1 [-0.87, 0.6] No

Tool using

helpSpeed -0.5 [-0.95, -0.14] Yes
pollutedSensor 1.3 [0.33, 2.22] Yes
downStreamSensor 0.5 [-1.54, 2.53] No
sameAreaSensor -2.4 [-3.69, -1.08] Yes
�ndAreaSensor -0.7 [-1.64, 0.36] No
cleanSensor 0.3 [-0.26, 0.81] No
failCrate -0.7 [-1.35, 0] No

Item interaction

successCrate -2 [-3.3, -0.75] Yes
U3argumentLevel 0.1 [-0.16, 0.4] No
U2argumentLevel 0 [-0.24, 0.22] No
nodeHoverFreq 1 [0.5, 1.58] Yes
claimIISpeed 0.3 [0.02, 0.66] Yes
evidenceBSpeed 0.5 [0.18,0.85] Yes
reason3Speed 0.1 [-0.24, 0.44] No
reason4Speed -0.6 [-0.95, -0.19] Yes
claimISpeed -0.3 [-0.65, 0.06] No
reason5Speed 0.1 [-0.21, 0.44] No
evidenceASpeed -0.1 [-0.4, 0.28] No
reason2Speed -0.1 [-0.52, 0.21] No

Argumentation

reason1Speed -0.5 [-0.85, -0.04] Yes
itemTrigger -0.7 [-1.61, 0.25] No
movement -1.3 [-3.16, 0.4] No
missionProgress 0.2 [-0.51, 0.87] No
dialogue -0.7 [-2.19, 0.82] No
toolUsing -0.7 [-1.98, 0.44] No
hotkey 1.3 [0.19,2.53] Yes
argument -1 [-1.51, -0.42] Yes
jump -0.4 [-0.77, -0.02] Yes

Event shares

toggleBoard 0 [-0.33, 0.48] No
Dialogue dialogueAvgSpeed 0 [-0.38, 0.35] No
Replay time trial 1.1 [0.24, 2.14] Yes

tutorial 0 [-0.29, 0.33] No
biggerWatershed 0 [-0.44, 0.44] No
upstreamArgument -0.1 [-0.53, 0.26] No
CREi 1.2 [0.69, 1.8] Yes
JasperCritique 0.6 [0.1, 1.16] Yes
�ndTeam 1.3 [0.65, 1.9] Yes
gardenPlant -0.4 [-0.99, 0.1] No

Embedded score

crateDelivery 0.4 [-1.21, 1.96] No
preTestLowLevel -2.4 [-3.18, -1.7] Yes

External information
teacherID 0 [0, 0.01] No

Table 3. The model inference outcome, produced by the Bayesian Generalized Linear Regression (BGL), provides several
insights. Each feature falls into a category listed in the 'Category' column. The 'Feature Name' column lists the features, and
the 'Coef�cient' column presents the median value of each estimated coef�cient. The fourth column, the Highest Density
Interval (HDI), functions similarly to a con�dence interval and serves as a primary index for determining a feature's
signi�cance. We deem a feature signi�cant if its HDI doesn't encompass zero. Signi�cant features are marked in two colors:
orange indicates a positive correlation with students' high-level learning outcomes, while blue denotes a negative correlation.

• Interaction with In-Game Items: Correct placement of pollution sensors enhances learning outcomes, while redundant
sensor usage or excessive crate delivery negatively impacts learning outcomes. This suggests that interactions with items
that assist in completing major quests lead to better learning outcomes, whereas redundant interactions with unrelated
items result in worse outcomes.

• Argumentation Performance: Higher argumentation performance in Unit 3 and frequent hovering over choice nodes
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in the argumentation system suggest high-level learning outcomes. Detailed interactions within choice nodes, text
reminders, and illustrations, as well as spending time to carefully read and digest information, help improve learning
outcomes.

• Game Events: Certain game events, such as hotkey usage and quest/task-related actions, positively correlate with
learning outcomes. Conversely, other event shares negatively impact outcomes, except for toggle board usage. This
implies that students concentrating on completing major quests and knowing how to apply appropriate in-game tools
perform better in corresponding learning outcomes.

• Dialogue Reading Speed:Average dialogue reading speed appears to have little impact on learning outcomes.

• Embedded Assessment Scores:High embedded assessment scores in the CREi system, critical dialogue with Jasper,
team �nding, and crate delivery tasks indicate high-level learning outcomes. In contrast, scores in argumentation in Unit
3 and garden planting slightly decreased learning outcomes. Other scores have little impact on learning outcomes.

• External Sources:A student's pre-test performance positively correlates with their post-test performance, implying that
pre-existing knowledge plays a vital role in learning progression. However, instructor guidance seems to have little effect
on students' learning outcomes in this study, suggesting that the game's design and individual student engagement are
more critical factors.

Each category, except for the dialogue feature category, has features signi�cantly correlating with learning outcomes.
Potential reasons why the feature representing students' dialogue reading behaviors shows a signi�cant contribution individually
but decreases in signi�cance when combined with other features include: 1) Feature interaction – The feature's effect might
depend on the presence of other features, with interaction effects either enhancing or diminishing its importance when combined;
2) Over�tting issue – the feature might over�t the target variable when considered alone but fail to generalize well when other
features are included; 3) Redundant information – the feature might provide information already captured by a combination of
other features, rendering its individual contribution insigni�cant in the combined model.

6. Discussion
Stealth assessment in serious games enables the unobtrusive collection of data to monitor learning progress and evaluate
complex competencies. This study introduces a granular, framework-based pipeline for implementing stealth assessments in a
GBL environment, structured around the ECD framework, feature generation, computational model selection, and performance
evaluation. A key novelty is the development and validation of this approach to effectively predict learning outcomes by
capturing in-game behavior patterns. Additionally, we integrate two established frameworks—ATMSG and xAPI—for logging
system design, addressing gaps in the empirical application of these frameworks for data logging in educational games. Our
approach also incorporates the IDEFA framework for feature generation, advancing current methodologies that require further
empirical validation.

This study makes a signi�cant contribution by incorporating a wide range of in-game behaviors into the dataset for model
construction, addressing the gap in empirical research on combining in-game features to analyze learning patterns. While
there is room for further expansion, our approach includes a broader feature set than many previous studies, advancing the
application of learning analytics in GBL. Furthermore, we introduce a surrogate white-box model to interpret the black-box
computational models used in stealth assessments. This blend of interpretability and predictive power offers a novel solution
for identifying distinct behavioral patterns between high and low-performing students, a method not extensively validated in
educational games. Finally, this research addresses key gaps by providing generalizable guidelines for implementing stealth
assessments across diverse educational contexts, contributing to the broader body of research.

6.1 Further Thoughts Regarding RQ1 Results: Potential Re�nements Following ECD's Iterative Design
Paradigm

As discussed in Section 4, the ECD framework was instrumental in structuring our stealth assessment pipeline for MHS,
providing a systematic approach for translating in-game behaviors into insights about student learning. One of ECD's core
strengths is its iterative design paradigm (L. Wang et al., 2015; Ke & Shute, 2015; V. J. Shute et al., 2016; Grover et al., 2017),
which we will adopt in future iterations to continuously re�ne the pipeline. This iterative process will enable us to revisit
and enhance each stage—feature aggregation, feature engineering, model selection, and task design—based on empirical
�ndings. By doing so, we expect to improve the pipeline's predictive accuracy, model interpretability, and generalizability
across different educational contexts.
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6.1.1 Iterative Adjustments in Feature Generation
Initial analysis and expert input revealed several areas for improvement in our feature set, particularly in managing intercorrelated
features, addressing prediction speci�city for low-performing students, and enhancing generalizability across game contexts.

First, during feature aggregation, we opted to delete student records with over 30% missing data. However, this approach
may have discarded critical information, especially for low-performing students, whose gameplay logs often contained more
missing data due to early disengagement. Future re�nements should explore more sophisticated imputation techniques to retain
these samples and better capture learning challenges faced by lower performers (KEERIN, 2021).

Second, while our feature selection process relied on manual curation based on expert judgment, we may have overlooked
potentially valuable data. For instance, we only included interactions with key pedagogical objects, but non-pedagogical
interactions could also provide insight into learning behaviors. Future iterations could involve automatic feature selection
methods, applying advanced techniques to evaluate all potential features systematically. This approach would save time, retain
relevant information, and improve the pipeline's generalizability (Jalota & Agrawal, 2021).

Additionally, certain features, such as the size of the explored game area and dialogue events, require further re�nement.
For exploration behaviors, future adjustments could capture both breadth and depth, such as repeated visits to the same
areas, to better predict performance across different student groups. Dialogue event features could be further differentiated
by categorizing dialogues related to gameplay progression versus those related to instructional content, ensuring that subtle
learning behaviors are better represented in the model.

In terms of feature engineering, future re�nements could address correlated features within subcategories, which may
introduce noise and hinder model performance. Techniques like Independent Component Analysis (ICA), Principal Component
Analysis (PCA), or autoencoders could be employed to reduce redundancy and improve the model's predictive power (Ray et
al., 2021). Moreover, combining features from different subcategories through feature extraction methods could help capture
inter-categorical relationships, providing richer insights and enhancing model performance.

6.1.2 Computational Model Re�nement
Although the current study demonstrated promising results, several areas could bene�t from further iteration to enhance model
performance and improve generalizability across different game contexts.

One key area for re�nement is the generalizability of the model selection process to other game-based learning environments.
While models were carefully selected based on the �nal feature set's characteristics, their performance may be limited to the
speci�c context of this study. Additionally, the model selection process did not involve a comprehensive search for optimal
algorithms aligned with the feature set. Moreover, the current study relied heavily on Random Forest (RF) without leveraging
the combined strengths of multiple models. To address these issues, future iterations could explore Ensemble Learning (EL)
techniques. EL allows for the �exible combination of different base models, with the ability to add or remove models depending
on performance. Various voting schemes, such as hard voting (using the best-performing model's result) and soft voting
(weighted combination of model outputs), provide �exibility in determining the �nal result. Implementing EL could enhance
model robustness and improve generalizability across various game contexts within Mission Hydro Science (MHS) and other
game-based learning environments (Siddique et al., 2021).

Another area for re�nement is model performance, particularly in improving speci�city for identifying low-performing
students. While RF achieved high overall accuracy, it struggled to capture the nuanced behaviors of lower performers.
Future work could involve testing simpler models, such as the Bayesian Generalized Linear Model (BGL), through extensive
hyperparameter tuning. BGL's probabilistic framework offers greater interpretability and may provide insights into low-
performing students' learning behaviors, which complex models might overlook. This re�nement would prioritize not only
accuracy but also the ability to generate actionable insights for instructors to support struggling students.

Finally, addressing dataset imbalance remains a critical area for future iterations. Although the current study employed
several resampling techniques, future studies could incorporate more advanced methods such as the Adaptive Synthetic
Sampling Approach (ADASYN), Borderline-SMOTE, and Cluster-SMOTE (Wongvorachan et al., 2023). Paired with re�ned
feature selection methods like Recursive Feature Elimination with Cross-Validation (RFECV), the Boruta algorithm, and
Mutual Information-based Feature Selection, these approaches would help ensure that models capture learning patterns across
the full spectrum of student performance, particularly in underrepresented groups (Dhal & Azad, 2022).

6.1.3 Task Model Adjustment
In addition to feature and model re�nements, the Task model, which involves de�ning in-game tasks to generate evidence for
learning prediction models, can also bene�t from the iterative design paradigm of ECD.

One key area for re�nement is the involvement of in-game activities that elicit clearer evidence of student learning behaviors,
particularly in distinguishing different learning levels. For example, tasks such as ”arguing which watershed is bigger” and
”convincing Bill the pollutant is nearby” (see Table 16) already integrate argumentation construction, a critical learning objective.
However, future iterations could introduce more detailed in-game activities that encourage varied levels of reasoning and
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decision-making. For instance, argumentation tasks could be broken down into multiple attempts (e.g., an attempt is from
starting to construct an argument to submitting a �nal response). By recording which speci�c components were selected during
argument construction—especially in cases where students submit incorrect arguments—we could identify which aspects of the
argumentation process pose challenges for students. This more granular breakdown would help us understand where students
struggle, providing stronger evidence of their learning progress and identifying the speci�c skills they need to improve.

Additionally, task re�nement could involve segmenting broader tasks (e.g., transporting supplies or tracing a pollutant
source) into smaller, more speci�c actions to enable more detailed tracking of student progress. For example, breaking the
task of tracing a pollutant into distinct phases—such as identifying clean versus polluted river sections or applying sensors at
different water points—could offer deeper insights into how students apply their knowledge of water �ow dynamics. These
adjustments would generate clearer, more actionable evidence that can be used to enhance predictive models.

6.1.4 More Granular Competency Model
In future iterations of our stealth assessment framework, we plan to adopt a more granular competency model that evaluates
learning outcomes at the item level, while ensuring appropriate protection of student privacy. Although this study used the
summation of three assessment items to measure overall knowledge of water �ow dynamics, we recognize the limitations in
capturing item-speci�c insights. Future studies will focus on item-level analyses to gain a deeper understanding of student
competencies across different aspects of the topic. This approach will help identify speci�c strengths and weaknesses, allowing
for more targeted instructional interventions. By re�ning the competency model to re�ect distinct knowledge areas, we aim to
improve the interpretability of assessment results, providing educators with more precise and actionable insights.

Ultimately, future iterations will aim to re�ne the task design (Task model in ECD), the evidence generation process
(Evidence model in ECD, including features and computational models), and the competency measurement (Competency model
in ECD). By aligning in-game activities more closely with learning objectives and collecting more precise evidence, we can
improve the accuracy of predictions related to student performance. Speci�cally, adopting a more granular competency model
will allow us to conduct item-level analyses, providing deeper insights into individual student competencies and enhancing the
precision of our learning assessments. This iterative re�nement will ensure that tasks in MHS not only engage students but
also yield meaningful insights into their learning trajectories. The continuous optimization of these models, under the ECD's
iterative design paradigm, will further enhance the robustness and generalizability of our stealth assessment framework across
various educational contexts.

6.2 Implications for RQ2's Results: Insights from Interpreting Black-Box Models
In addressingRQ2, we discuss potential methods for interpreting black-box models and explain why we chose the Surrogate
Model method to infer black-box models, speci�cally using BLG to interpret the Random Forest model. Our inference method
offers a viable solution for understanding how individual features impact the targeted learning outcome while achieving highly
accurate predictions from black-box models. By consolidating inference results, we identify key features that signal students'
learning outcomes for MHS, completing the stealth assessment tool. A thorough examination of the inference results led us
to conclude that nearly every feature category has features signi�cantly impacting students' learning outcomes, except the
dialogue category. Speci�cally, the �ndings suggest several deductions, as described in the following paragraphs.

Previous research has demonstrated that patterns of student engagement with in-game tools correlate with their level of
expertise (Kang et al., 2017). Our analysis reveals that high-performing students exhibit greater ef�ciency and purpose when
using in-game tools. Speci�cally, they engage with these tools primarily to verify preconceived ideas rather than to generate new
ones. Furthermore, high-performers display a superior ability to maintain sustained attention compared to their low-performing
peers when searching for appropriate tools to complete quests. Additionally, high-performers frequently and quickly use tools
that do not contain lengthy texts, indicating a stronger motivation or enhanced capability to gather information from multiple
sources for quest completion.

Insights into students' problem-solving strategies and knowledge absorption can be gleaned from their interactions with
in-game items (V. J. Shute et al., 2016). We observed that high-performing students interacted with relevant items less frequently
but with a clear purpose. In contrast, low-performing students interacted with items more frequently and without a clear purpose.
This suggests that high-performers are more likely to engage with items purposefully or after careful consideration than their
low-performing peers. This pattern is evident in how these groups interacted with crates that needed to be delivered to one of
two rivers. High performers adjusted their actions based on feedback from previous delivery outcomes, whereas low performers
tended to ignore feedback and did not alter their actions.

Event Share features illuminate how students distribute their game time, indicating that students concentrating on completing
major quests and knowing how to apply appropriate in-game tools perform better in corresponding learning outcomes. It may
also suggest that high performers exhibit a keen understanding of game mechanics and maintain focus on their objectives. In
contrast, low performers are more easily distracted and struggle to �lter relevant information from their surroundings.
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Regarding the argumentation system, we observed that high performers tended to read information at different choice nodes
more carefully and compared them more frequently, indicating a deeper understanding of the curriculum. In contrast, low
performers were more ef�cient in �ltering incorrect nodes and identifying correct ones. Notably, argumentation performances
in both Unit 2 and Unit 3 showed no signi�cant correlation with our targeted learning outcomes, contrary to our expectations.
This discrepancy may be attributed to inadequate feature generation, as we only included logs showing the frequency of correct
and incorrect answer submissions. We did not include logs representing student interactions with assistant tools or behavior
sequences within the argumentation system. Additionally, inappropriate game mechanics design within the argumentation
system might have contributed to this issue. The system allows unlimited attempts to �nd the correct answer, and how evidence
is presented does not help students connect it to evidence collected during gameplay. Furthermore, the content embedded within
the constructed argumentation has limited association with the content knowledge that MHS Unit 3 aims to teach.

Embedded assessment scores showed mixed correlations with targeted learning outcomes. While some scores demonstrated
a positive association, one score exhibited a negative correlation, contrary to our expectations. This discrepancy may be due to
unclear quest instructions or immature game graphics and mechanics. Additionally, some embedded scores showed minimal
correlation with learning outcomes, indicating the need for further feature engineering to �nd better measurements for these
scores. Notably, students who replayed the game multiple times outperformed their peers, implying that a mechanism allowing
students to replay similar tasks as practice is crucial for educational game design and development. This �nding also suggests
that incorporating a stealth assessment to track the frequency of repeated game content or mechanics is important for accurately
measuring in-game performance and targeted learning outcomes. As for the dialogue category, we discuss potential reasons for
the diminishing signi�cance of this feature category, which warrant further analysis and may emphasize the complex interplay
between various gameplay elements and their collective impact on learning outcomes.

Our study underscores the multifaceted nature of learning in educational games and highlights the critical role of speci�c
gameplay features in enhancing or impeding high-level learning outcomes. These insights have potential implications for the
design of stealth assessments, pedagogical activities, and educational games, which will be elaborated in the following section.

6.3 Implications for Stealth Assessment Design
(Carvalho et al., 2015) suggested that their framework is particularly suitable for ”Expert usage,” implying that stakeholders
re�ning their games with ATMSG analytics bene�t more from this framework. Conversely, those using the games without
modi�cation willingness may be better served by simpler frameworks handling less granular log data due to cognitive load
limitations. Our study, however, indicates that research groups should integrate a granular logging system capable of collecting
comprehensive, feature-rich data, especially during the early stages of research, irrespective of their speci�c usage contexts.
Similar opinions are echoed by (E. Rowe et al., 2017) and (Ke et al., 2019).

Even experienced experts often struggle to identify necessary game logs for constructing effective stealth assessments,
requiring numerous rounds of adjustment and testing with granular logging systems to ensure no key information is omitted
(F. Chen et al., 2020). Despite extensive brainstorming and discussion in our study, we found our feature selections insuf�cient
to fully exploit stealth assessment potential, which includes real-time formative feedback during gameplay(Min et al., 2020),
adaptive learning experiences (V. J. Shute & Rahimi, 2021), and user-friendly dashboards for instructors to monitor students'
gameplay in real-time (F. Chen et al., 2020). Therefore, we recommend that future studies construct stealth assessments within
complex game-based learning environments to ensure that embedded logging systems can collect extensive, detailed data
re�ecting students' actions and contextual information. Ideally, this system should evolve alongside the game (Ke et al., 2019).

Based on our study, we recommend future research consider the following game logs to assess students' learning outcomes
unobtrusively:

• Tool Utilization Tracking: Logs on how students use in-game tools can distinguish low and high performers. Detailed
sequences of tool-usage actions provide insights into decision-making processes and problem-solving strategies (Kang et
al., 2017). Ef�ciency metrics, such as time taken to locate and utilize tools, indicate understanding of game mechanics,
suggesting a correlation between high ef�ciency and greater expertise. Differentiating between tools used for verifying
ideas versus generating new insights helps assess cognitive strategies and learning styles.

• Instruction Interaction Tracking: Logs recording how students interact with instructions, including time spent reading
and the sequence of steps followed, can measure students' learning outcomes. These actions re�ect how students absorb
new information and their learning processes during gameplay.

• Game World Exploration Tracking: Detailed logs of exploration activities, including areas visited, time spent, and
interactions, help identify patterns of distraction or focus loss. This data is crucial for understanding navigation and
attention allocation within the game environment (Loh et al., 2016).
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• In-Game Item Interaction Tracking: Capturing detailed information on interactions with in-game items, including
time spent, frequency, and sequence, helps identify students who engage meaningfully with content versus those who
struggle (Yang et al., 2021)).

• Decision-Making Points Tracking: Identifying key decision points and the sequences of choices made at these points,
including time spent reading, provides insights into how decision-making skills correlate with learning outcomes, which
is also supported by the study of (Snow et al., 2015).

• Feedback Responsiveness Measurement:Logs tracking how students respond to in-game feedback, including changes
in behavior after receiving feedback, such as adjusting strategies or correcting mistakes, can differentiate high performers
who use feedback effectively from low performers who may ignore it.

• Comprehensive Event Share Logging:Detailed logs capturing how students distribute their time across various game
events and activities, including the duration and frequency of interactions with different game elements, help identify
students' learning processes and moments when they deviate from their objectives. This provides insights into their
attention management.

• Replay Mechanics and Practice:Logs of replay activities capturing data on tasks replayed, frequency of replays, and
outcomes of each attempt help measure students' learning progress during gameplay. This can identify valuable tasks for
practice and how repeated practice affects learning outcomes.

• Performance Metrics Through Different Game Stages:Learning-objective-speci�c performance metrics, such as
embedded scores, track students' learning outcomes in different game stages. Our �ndings indicate that combining
in-game activities with embedded assessment scores or performance metrics leads to the highest accuracy. Therefore,
we suggest that stealth assessments involve a comprehensive standard rubric to guide the creation of these performance
metrics according to educational game design.

Key Suggestions to Designers and Practitioners Regarding Stealth Assessment Design & Development Process Our
process for constructing the stealth assessment emphasizes the importance of iterative design and testing in re�ning both the
stealth assessment and the educational game. By integrating continuous improvement cycles, data-driven adjustments, and
key user involvement, we aim to create a robust and effective learning environment. This environment should align game
content with learning objectives, maintaining engagement and motivation without causing excessive distractions. We offer the
following suggestions for future researchers conducting iterative design and testing for re�ning stealth assessments:

• Continuous improvement: Practitioners should frequently conduct pilot tests of new logging and assessment features
with a small group of students. These pilot tests facilitate gathering preliminary data and necessary adjustments before
wider implementation. User feedback and observed data patterns from these tests guide the iterative design and testing
processes, continually re�ning logging systems and stealth assessments. Regular updates and improvements ensure that
assessment tools remain effective and relevant (L. Wang et al., 2015; V. J. Shute et al., 2016). The iterative process also
helps align game mechanics with curriculum goals, con�rming that students learn from the game. Designing in-game
tasks and elements that directly support learning objectives, such as real-world scenarios, helps students apply their
knowledge to solve problems (Ke & Shute, 2015).

• Data-driven adjustments: Regular reviews of logged data allow for data-driven adjustments to stealth assessments,
ensuring the collection of suf�cient and relevant events with corresponding context information. Analyzing the correlation
between learning-objective performance metrics or embedded assessment scores and targeted learning outcomes enables
the re�nement of stealth assessments (Ke & Shute, 2015). Focusing on assessments with strong positive correlations
and reworking or replacing those with weak or negative correlations can improve the reliability and effectiveness of the
stealth assessment.

• Key user involvement: Involving both students and educators in the design and testing process ensures that the system
meets instructional needs and provides valuable insights into the student learning process (Hicks, 2021). Educator
feedback is essential for constructing stealth assessments that align with the game's educational content. This feedback
helps identify necessary indicators or features for educators' use, enhancing the overall effectiveness of the stealth
assessment tool. Matching educators' perceptions with the goals of stealth assessments provides instructors with useful
references for determining intervention moments, thereby enhancing the educational value of the game-based learning
environment.
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6.4 Future Research: Considering Implications for Affective Metrics
Sections 6.1, 6.2, and 6.3 outlined potential future studies centered on iterative re�nements to features, models, and the design
of both the stealth assessment and the game itself. In this section, we propose new avenues for research, focusing speci�cally
on the development of affective metrics to further enhance the predictive accuracy of our learning outcome model. Based on
our study, although our prediction model surpasses an acceptable accuracy threshold, there is noticeable room for improvement.
While examining our results, we identi�ed some interesting patterns not directly con�rmed by the current features. We propose
that constructing affective metrics based on features representing in-game activities could enhance our learning outcome
prediction model, providing enhanced interpretability and appropriately measuring those patterns. These affective metrics can
measure attention, engagement, motivation, and cognitive load levels. Additionally, these metrics can shape critical elements
within instructor dashboards, aiding teachers in making appropriate intervention decisions. When combined, these affective
metrics generate richer information for measuring complex patterns.

Based on our �ndings, we summarize the following implications for generating affective metrics from features representing
in-game activities:

• Attention and Focus Measurement:By analyzing the duration of uninterrupted interactions with speci�c tools or tasks,
we can track students' ability to sustain attention over extended periods. This measurement helps identify individuals
who excel at maintaining concentration and those who might bene�t from additional support. Logging instances when
students divert from primary tasks to engage with irrelevant game elements provides critical data on distraction events.
These instances are valuable for identifying game aspects that may cause students to lose focus. Analyzing patterns of
focus and distraction, such as deviations from set tasks or prolonged periods of inactivity, can indicate levels of attention
that signi�cantly affect students' learning outcomes (Lin et al., 2019).

• Engagement and Motivation Metrics: Tracking indicators such as the frequency and duration of interactions with
speci�c gameplay elements, optional tasks, and replay activities allows us to assess overall engagement and motivation
levels, which often correlate with targeted learning outcomes. Studies by Chen et al. (2019) and Dabbous et al. (2022)
identi�ed that participants willing to engage in optional or extra activities are likelier to have higher engagement and
learning outcomes. Additionally, analyzing how often students voluntarily use optional tools or participate in extra-game
world exploration and conversations with non-playable characters offers insights into their motivation levels (David Des
Armier Jr. & Skrabut, 2016). Investigating the correlation between these metrics and targeted learning outcomes helps
determine whether highly engaging elements support learning objectives or merely entertain. Monitoring instances where
high engagement does not lead to high learning outcomes allows for re�ning game features to align more closely with
educational goals.

• Cognitive Load Measurement:Cognitive load could be measured by 1) Calculating the time duration students use
to complete tasks and comparing this duration with the total gameplay duration. 2) Measuring the time spent reading
instructions relative to the total gameplay time to estimate the cognitive load of absorbing new information. 3) Monitoring
the frequency and duration of interactions with in-game items to derive a metric of cognitive effort related to puzzle-
solving. High frequency and duration of interactions with certain items may indicate a high cognitive load when solving
corresponding problems (Sevcenko et al., 2021). 4) Tracking students' speed, frequency, and accuracy with tool usage in
various contexts to re�ect how well they handle the cognitive demands of tool selection and application. Suppose all
students exhibit high levels of cognitive load in certain activities. In that case, these game sessions may require further
investigation to determine if they are too dif�cult, which may negatively affect learning outcomes (Chang et al., 2017).
Conversely, if only a few students show high cognitive load levels, instructors could consider providing additional support
to those students.

Last but not least, our prediction model results indicate a signi�cant discrepancy in its ability to detect low-performing
students compared to high-performing ones. We hypothesize that this discrepancy may be due to the lack of speci�c features
representing students' off-task behaviors. The absence of such features could pose a key obstacle to implementing serious
games with embedded stealth assessment in classrooms (Sabourin et al., 2013; Carpenter et al., 2020). Off-task behaviors,
known contributors to ineffective learning (J. P. Rowe et al., 2009; Baker et al., 2004; Beserra et al., 2019; Baker et al., 2010),
are complex to measure accurately due to their contextual nature(Carpenter et al., 2020). Although we identi�ed potential
indicators of such behaviors in MHS through model inference—including extraneous map exploration, non-goal-oriented
interactions with items, and hasty task completion—further analysis is required to con�rm their correlation with off-task
behaviors. Once con�rmed, these indicators could be incorporated into a visualization dashboard for instructors, enabling more
effective monitoring of student gameplay performance.

Since the game logs in MHS contain rich behavioral information designed to measure learning, we demonstrated a pipeline
for creating a stealth assessment system grounded in student outcomes. It remains challenging for researchers to identify the
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underlying reasons for these behaviors based solely on logging data, and this remains a limitation of stealth assessment. Closing
this gap can be accomplished using a comprehensive framework that extends beyond the game and analysis of its logs, as
introduced by Grover et al. (2017). Grover's approach encourages incorporating multi-source data, such as video recordings,
interviews, surveys, biometric measurements, and focus groups. This approach assists in interpreting the behaviors re�ected
in the logs. Understanding the reasons behind these behaviors will help generate additional feature metrics, such as those
mentioned above, and improve the accuracy and effectiveness of our stealth assessment.
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Lee, J. Y., Donkers, J., Jarodzka, H., & van Merriënboer, J. J. (2019). How prior knowledge affects problem-solving
performance in a medical simulation game: Using game-logs and eye-tracking.Computers in Human Behavior, 99, 268-277.
Retrieved fromhttps://www.sciencedirect.com/science/article/pii/S074756321930216X doi:
https://doi.org/10.1016/j.chb.2019.05.035

Li, F.-Y., Hwang, G.-J., Chen, P.-Y., & Lin, Y.-J. (2021). Effects of a concept mapping-based two-tier test strategy on
students' digital game-based learning performances and behavioral patterns.Computers & Education, 173, 104293.
Retrieved fromhttps://www.sciencedirect.com/science/article/pii/S0360131521001706 doi:
https://doi.org/10.1016/j.compedu.2021.104293
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Niemel̈a, M., Kärkkäinen, T.,Äyrämö, S., Ronimus, M., Richardson, U., & Lyytinen, H. (2020). Game learning analytics for
understanding reading skills in transparent writing system.British Journal of Educational Technology, 51(6), 2376–2390.
doi: https://doi.org/10.1111/bjet.12916

27



Nietfeld, J. L. (2020). Predicting transfer from a game-based learning environment.Computers & Education, 146, 103780.
Retrieved fromhttps://www.sciencedirect.com/science/article/pii/S0360131519303306 doi:
https://doi.org/10.1016/j.compedu.2019.103780

Owen, V. E., & Baker, R. S. (2020). Fueling Prediction of Player Decisions: Foundations of Feature Engineering for
Optimized Behavior Modeling in Serious Games.Technology, Knowledge and Learning, 25(2), 225–250. Retrieved from
http://link.springer.com/10.1007/s10758-018-9393-9 doi: 10.1007/s10758-018-9393-9

Park, H.-S., & Cho, S.-B. (2010). Building mobile social network with semantic relation using bayesian network-based life-log
mining. In2010 ieee second international conference on social computing(p. 401-406). doi: 10.1109/SocialCom.2010.64
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10. Appendix A

10.1 Gameplay Metircs Construction
10.1.1 Size of explored game area

Feature Name In Dataset Brief Description
Explored Area A categorical variable, including 4 levels, describes the size of the

explored area of unit 3's main game map. The higher the level,
the larger the map size the student explored during gameplay.

DungeonExplored Area A categorical variable, including 4 levels, describes the size of
the explored area of unit 3's dungeon map. The higher the level
the larger the map size the student explored during the game
procedure.

Table 4

10.1.2 Speed of task completion

Feature Name In Dataset Brief Description
AverageSpeed A categorical variable, including 4 levels, describes the size of the

explored area of unit 3's main game map. The higher the level,
the larger the map size the student explored during gameplay.

Table 5

10.1.3 Tool using status

Feature Name in Dataset Brief Description
Map.menu.node.freq An integer variable that measures how many times a student

opens the in-game tool, map, to seek for a path to ful�ll tasks or
solve puzzles.

Chat.log.menu.node.freq An integer variable measures how often a student opens the chat
log tool to review conversations that happened with in-game
characters for important information extraction.

Crash.diagnostics.menu.node.freq An integer variable that measures how many times a student opens
the in-game tool, crash diagnostics, to �gure out what issues
happened on the spaceship mainly for �xing it and performing
the side quests.

Quest.menu.node.freq An integer variable that measures how many times a student opens
the in-game tool, quest menu, to review requests for ful�lling the
current quest.

Backing.info.menu.node.freq An integer variable that measures how many times a student opens
the in-game tool, backing information, to check the storyline and
background information.

Help.menu.node.freq An integer variable that measures how many times a student opens
the in-game tool, help menu, to �nd out solutions for problems
related to game operation.

Map.menu.node A numeric variable that measures the student's average speed of
checking the tool, map, to seek for a path to ful�ll tasks or solve
puzzles.

Chat.log.menu.node A numeric variable that measures the student's average speed of
checking the tool, chat log, to review conversations that happened
with in-game characters for important information extraction.
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Crash.diagnostics.menu.node A numeric variable that measures the student's average speed of
checking the tool, crash diagnostics, to �gure out what issues
happened on the spaceship mainly for �xing it and performing
the side quests.

Quest.menu.node A numeric variable that measures the student's average speed of
checking the tool, quest menu, to review requests for ful�lling
the current quest.

Backing.info.menu.node A numeric variable that measures the student's average speed of
checking the tool, backing information, to check the storyline and
background information.

Help.menu.node A numeric variable which measures the student's average speed
of checking the tool, help menu, to �nd out solutions for problems
related to game operation.

Table 6

10.1.4 In-game items interactions

Feature Name in Dataset Brief Description
U3...TOSS.SENSOR..POLLUTED This data was collected during the quest which asks students for

throwing out sensors and �nd out the pollutant river source based
on the sensors' signals. The variable records the frequency of
throwing out the sensor with the signal showing that this river
area has a pollutant. This is an integer variable.

U3...TOSS.SENSOR.DOWNSTREAM This data was collected during the quest which asks students for
throwing out sensors and �nd out the pollutant river source based
on the sensors' signals. The variable records the frequency of
throwing out the sensor with the signal showing that the student
throws sensors into the river's down area which is not in the
search scope. This is an integer variable.

U3...TOSS.SENSOR.POLLUTED.SAME.AREA This data was collected during the quest which asks students for
throwing out sensors and �nd out the pollutant river source based
on the sensors' signals. The variable records the frequency of
throwing out the sensor with the signal showing that the student
threw sensors into the river's area which has already been checked
by previously thrown sensors. This is an integer variable.

U3...TOSS.SENSOR..SUCCESS This data was collected during the quest which asks students for
throwing out sensors and �nd out the pollutant river source based
on the sensors' signals. The variable records the frequency of
throwing out the sensor with the signal showing that the student
throws sensors into the river's area which is not polluted. This is
an integer variable.

U3...TOSS.SENSOR.DOWNSTREAM.CLEAN This data was collected during the quest which asks students for
throwing out sensors and �nd out the pollutant river source based
on the sensors' signals. The variable records the frequency of
throwing out the sensor with the signal showing that the student
throws sensors into the river's down area which is clean and not
in the searching scope. This is an integer variable.

U3...CRATE.THROW..FAIL This data was collected during the quest which asks students for
delivering crates into the correct river based on the river �ow.
The variable records the frequency of how many crates the player
delivers to the wrong river. This is an integer variable.
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U3...CRATE.THROW..SUCCESS This data was collected during the quest which asks students for
delivering crates into the correct river based on the river �ow.
The variable records the frequency of how many crates the player
delivers to the correct river. This is an integer variable.

Table 7

10.1.5 Argumentation-related gaming behaviors

Feature Name in Dataset Brief Description
HOVERNODEFREQ The variable records how many times the student hovered on a

node, which will trigger out a popup text box showing the detail
information associated with the node. This is an integer variable.

U3.CLAIM.II The variable records the speed the student used to read a speci�c
node, which is called “U3.Claim.ll” at this case. This is a numeric
variable with the interval scaled from 1 to 4.

U3.EVIDENCE.B The variable records the speed the student used to read a speci�c
node, which is called “U3.Evidence.B” at this case. This is a
numeric variable with the interval scaled from 1 to 4.

REASONING.3 The variable records the speed the student used to read a speci�c
node, which is called “Reasoning.3” at this case. This is a numeric
variable with the interval scaled from 1 to 4.

REASONING.4 The variable records the speed the student used to read a speci�c
node, which is called “Reasoning.4” at this case. This is a numeric
variable with the interval scaled from 1 to 4.

U3.CLAIM.I The variable records the speed the student used to read a speci�c
node, which is called “U3.Claim.l” at this case. This is a numeric
variable with the interval scaled from 1 to 4.

REASONING.5 The variable records the speed the student used to read a speci�c
node, which is called “Reasoning.5” at this case. This is a numeric
variable with the interval scaled from 1 to 4.

U3.EVIDENCE.A The variable records the speed the student used to read a speci�c
node, which is called “U3.Evidence.A” at this case. This is a
numeric variable with the interval scaled from 1 to 4.

REASONING.2 The variable records the speed the student used to read a speci�c
node, which is called “Reasoning.2” at this case. This is a numeric
variable with the interval scaled from 1 to 4.

REASONING.1 The variable records the speed the student used to read a speci�c
node, which is called “Reasoning.1” at this case. This is a numeric
variable with the interval scaled from 1 to 4.

Table 8

10.1.6 Gaming logging event shares

Feature Name In Dataset Brief Description
TriggerNumber The logging system will record a triggering event when the student

interacts with in-game items, such as boxes, river boarders, buttons, and
so on. The variable is calculated by summing up all triggering events
divided by the summation of the total number of events recorded during
the whole game procedure.
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MovementNumber The logging system will record a movement event when the student
presses the keyboard button of A, W, S, and D and move around in
the game environment. The variable is calculated by summing up all
movement events divided by the summation of the total number of events
recorded during the whole game procedure.

MissionCompleteNumber The logging system will record a mission-complete event when the
student receives, makes progress to, or perform a quest or a task. The
variable is calculated by summing up all mission-complete events divided
by the summation by the total number of events recorded during the
whole game procedure.

StateUpdateNumber The logging system will record a triggering event when the student
switch between different game scenes or does something that makes the
game system update some data. The variable is calculated by summing
up all state-update events divided by the summation by the total number
of events recorded during the whole game procedure.

DialogueNumber The logging system will record a dialogue event when the student triggers
a dialogue box out and makes operations, such as making choices to
different dialogue branches, pressing the button moving to the next
dialogue or pressing the button moving to the previous dialogue for
reviewing. The variable is calculated by summing up all dialogue events
divided by the summation of the total number of events recorded during
the whole game procedure.

ArfRelatedNumber The logging system will record an ARF-related event when the student
interacts with ARF(AI) panel to use in-game tools for seeking hints
related to solutions. The variable is calculated by summing up all ARF-
related events divided by the summation of the total number of events
recorded during the whole game procedure.

HotkeyNumber The logging system will record a Hotkey event when the student press
hotkeys for checking in-game tools, such as mini map, quest reminder,
dialogue records, and so on. The variable is calculated by summing up
all hotkey events divided by the summation of the total number of events
recorded during the whole game procedure.

ToggleNumber The logging system will record a toggle event when the student uses a
toggle board, a �yable skateboard to navigate in the game environment.
The variable is calculated by summing up all toggle events divided by
the summation of the total number of events recorded during the whole
game procedure.

JumpNumber The logging system will record a jump event when the student jumps
in the game environment. The variable is calculated by summing up
all jump events divided by the summation of the total number of events
recorded during the whole game procedure.

ArgNumber The logging system will record an argument event when the student
makes progress or interactions in a 2D game scene for argumentation
construction. The variable is calculated by summing up all argumentation
events divided by the summation of the total number of events recorded
during the whole game procedure.

Table 9

10.1.7 Gaming performance assessment
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Feature Name in Dataset Brief Description
SeedPerformance This data is collected when the student is asked to plant seeds in the

correct locations based on water �ow. The student will receive high
performance when he or she plants less than two seeds into the wrong
location, otherwise, he or she will be ranked as low performance. This is
a categorical variable.

ArgumentLevel This data is collected after students construct a complete argumentation
during playing Unit 3 and submitting the results for feedback. There are
5 levels under this categorical variable. The higher the level, the better
performance students receive in argumentation construction sessions.
E.g. students who submit correct answers without any failed trial will
reach the 5th level, and students who submit just one failed answer
without any correct submission will receive the 1st level.

U2ArgumentLevel This data is collected after students construct a complete argumentation
during playing Unit 2 and submitting the results for feedback. There are
5 levels under this categorical variable. The higher the level, the better
performance students receive in argumentation construction sessions.
E.g. students who submit the correct answer without any failed trial
will reach the 5th level, and students who submit just one failed answer
without any correct submission will receive the 1st level.

Table 10

10.1.8 Dialogue Reading Statement

Feature Name in Dataset Brief Description
DialogueSpeed This variable is numeric. It saves the average speed students used to read

dialogues. It is scaled into the interval from 1 to 4. The higher the value
the slower students read dialogues.

Table 11

10.1.9 Other Information

Feature Name in Dataset Brief Description
TeacherId This variable re�ects which teacher leads or guides the student to play

the game.
Trial It represents how many times the student replays the game or repeats the

same quests or tasks.
Table 12

10.2 Embedded Assessment Score Description
10.2.1 Embedded assessment score related to previous units

Feature Name in Dataset Brief Description Formula to Calculate the Score
TutorialArgScore This EA score is calculated after the stu-

dent �nding out a proper claim during the
argument construction tutorial quest that
happened in Unit 1

1 point for correct submission on 1st at-
tempt; 0 points for anything else.

BiggerArgScore This EA score is calculated after the student
forms a proper argumentation that clari�es
which watershed is bigger than the other
during the argumentation quest that hap-
pened during Unit 2.

2 points for �nding correct answers within
3 attempts; 1 point for �nding out correct
answers within 4 attempts; 0 points for no
answer �nding for more than 4 attempts.
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UpStreamArgScore This EA score is calculated after the student
forms a proper argumentation that clari�es
where the pollutant source is during the ar-
gument construction happening in Unit 3.

2 points for �nding correct answers within
3 attempts; 1 point for �nding out correct
answers within 6 attempts; 0 points for no
answer �nding for more than 6 attempts.

CREIScore This EA score is calculated when the stu-
dent enters into an environment where an
avatar asks them to �gure out a complete ar-
gumentation structure. This quest happens
in Unit 2.

1 point for each correct choice, -0.33 points
for each incorrect choice.

JasperCritiqueScore This EA score is calculated when the stu-
dent triggers out a dialogue box, chatting
with an avatar named Jasper, and needs to
make a choice to decide if Jasper's critique
is correct or not. This quest happens in Unit
2.

1 point for selecting “you forgot evidence;
0 points for either “Jasper you are right; or
“Jasper you forgot the claim.”

FindTeamAveScore This EA score is calculated when the stu-
dent needs to use an in-game mini-map to
�gure out the location based on topologic
characteristics. This quest happens in Unit
2.

0.5 points for opening the map; 1 point for
�nding the team in 3 minutes or less; 0
points for anything else.

Table 13

10.2.2 Embedded assessment score related to current unit

Feature Name in Dataset Brief Description Formula to Calculate the Score
PlantScore This EA score is calculated when the stu-

dent needs to �gure out where to plant seeds
based on pumps' locations along the pollu-
tant river. This quest happens in Unit 3.

1 point for Selecting a correct pump loca-
tion; -1/2 points for selecting an incorrect
pump location.

CrateDeliveryScore This EA score is calculated when the stu-
dent needs to choose the correct river for
delivering crates to an avatar Sam based on
the river �ow. This quest happens in Unit
3.

1 point for correct crate placement.

Table 14

10.3 External information

10.3.1 Pretest and post-test outcomes

Feature Name in Dataset Brief Description
U3PrePerformance Pretest score related to Unit 3's curriculum knowledge
U3PostPerformance Post-test score related to Unit 3's curriculum knowledge

Table 15
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11. Appendix B

As described in the game context and data collection section, Mission HydroSci (MHS) is a 3D game-based learning environment
designed and developed associated with comprehensive and sophisticated curriculum integration. Each key quest of MHS can
be seen as an ef�cient marker of learning achievement.

Table 16 displays the game unit, what quests are included in a speci�c unit, and a detailed description corresponding to one
quest. As you can see, there is one quest in Unit 1, �ve in Unit 2, and �ve in Unit 3, eleven in total. Notably, we mentioned
previously that there are 12 quests involved in this study and de�ned in the task model of the Evidence-Centered Design (ECD)
approach, which is because the quest of collecting samples from eastern and western waterfalls is actually two successive
quests.

Figure 1 shows several example screenshots displaying how the game world or surroundings look like when students were
engaging in completing some key quests mentioned above.

Game Unit Quest Name Detailed Description
Unit 1 Tutorial unit In this unit, students will talk to each key non-playable character, learn

open and get familiar of each in-game tool through menus or hotkeys,
know ways to navigate in the game world, and know about the interface
of the argumentation system to understand how to construct a complete
scienti�c argument

Unit 2

Find the team After crash-landing on a new planet, the main character (controlled by
the player) must locate the rest of the crew. To accomplish this, they must
interpret the topographic map and carefully observe their surroundings.
However, there is no way�nding assistance provided during this quest.

Collect samples from eastern
and western waterfalls

Based on the conversations with NPCs, players need to �nd the positions
of the eastern and western waterfalls. By investigating the samples of
two waterfalls, players need to collect appropriate evidence describing
the characteristics of each waterfall. In this way, they could deduce
the conditions of each waterfall's watershed and prepare later scienti�c
argumentation or debate with NPCs.

Argue which watershed is
bigger

Dr. Toppo (one of the NPCs) will invite players to the argumentation
system to construct a complete argument that makes sense with collected
evidence from the waterfalls. The argumentation system mimics the solar
system, where the claim works as the sun, and reason and evidence work
as planets around the sun. The planets represent evidence position in the
further interstellar orbit than the planets representing reasons. Players
need to choose the correct claim, reason and evidence from available
choices displayed in the left corner of the system.

Jasper's proposal Through a conversation with Jasper (Another NPC), you will debate
with him to determine if his proposal about the new place is logical with
the information the player collected from today's environment.

CREI system To �x the system of the AI ARF, players will enter into a system called
CREI to practice the de�nitions of three components of scienti�c argu-
mentation. Players will see a screen showing different sentences, and
they need to judge which component the sentence represents by throwing
balls in the direction showing the correct component.

Unit 3

Sam's supplies Players will meet Samantha (NPC) at her garden base as she is just
starting. To help her build up the garden, players need to transport
supplies to Sam's Garden base through the river. Players must deliver 4
crates to the river stream to �nish the quest. There are two river streams
where players must investigate their water �ows to decide which is the
correct stream to transport. After players deliver each crate to a certain
river stream, a dialogue will show the feedback on whether the stream is
correct.
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Game Unit Quest Name Detailed Description
Collect pumps from the alien
ruins

After �nding the pollutant source, Sam told us she found a huge tree
near an intersection of the river branches and doubted that some river
branches were also polluted by the battery core. To ensure her thought,
we need to enter into an alien ruin to collect pumps that allow us to plant
Sam's plant seeds into the mini gardens along the river to test which
branch was polluted. Players must apply what they learned regarding
water �ows to unlock those pumps and solve puzzles within the alien
ruin. The general format of the puzzle is to �nd and carry a cube from the
surroundings, put it into the water channel, and guide it to the destination
by managing the water �ow direction through a controlling panel.

Trace the source of pollutant After receiving the supplies, Sam found the river is polluted. She pro-
vides players with sensors which will light red when the river spot is
polluted and green when it's clean. Players need to take advantage of
the sensors and investigate the characteristics of the river, such as water
�ow direction, whether in a river branch or its surrounding environment,
to �nd the source of the pollutant, which is a crashed battery core.

Plant seeds After getting the pumps, players can plant Sam's seeds into the garden
along the river to trace how the dissolved pollutant materials spread
along the river �ow. Players need to observe the river conditions to judge
which mini garden to plant to accurately trace the dissolved pollutant
materials' �ow direction. Each time players plant the seed will trigger a
dialogue showing Sam's feedback regarding whether the mini-garden is
polluted.

Convince Bill the pollutant is
nearby

After �nding the position of the battery core, Bill (NPC) will invite
us to enter the argumentation system to construct a complete scienti�c
argument to convince him where the battery core is. The players must
choose the correct reasoning to connect the pre-decided evidence and
claim logically within the system.

Table 16. Detailed description for each game quest involved in the task model of the Evidence-Centered Design (ECD)
approach.
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