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Chapter 1
Introduction

Nicolas Jullien, Sorin Adam Matei, and Sean P. Goggins

Human interactions facilitated by social media, collaborative platforms, and the
blogosphere generate an unprecedented volume of electronic trace data every day.
These traces of human behavior online are a unique source for understanding
contemporary life behaviors, beliefs, interactions, and knowledge flows. The social
connections we make online, which reveal multiple types of human connection,
are also recorded on a scale and to a level of granularity previously unimaginable,
except possibly by science fiction writers. To many in the data analytics world,
these traces are a gold mine. New sub-domains of inquiry have emerged as a
consequence of this revolution: computational social science, big data, data science,
open innovation data analytics, network science, and undoubtedly new ones yet
to appear in the near future. Massive amounts of data, each counting millions of
data records and behaviors, are now available to the academic, governmental, or
industry research and teaching communities. They promise faster access to real-time
social behavior and better understanding of how people behave and interact. Such
“social” data include complete records of Wikipedia edits, interactions on social
coding platforms like GitHub, and the expression of affiliations and engagement of
participation on social media (Twitter, Facebook, YouTube, etc.).

Working with data of this kind and of this magnitude requires cleaning up
and preprocessing prodigious amounts information, which is nontrivial and costly.
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Providing documentation and descriptors for the data is also costly. In addition to
defining and cleaning, documentation is developed separately for each dataset, as the
variables and the procedures are created for each individual dataset. Furthermore,
at the end of the process, datasets end up in locked box repositories, not easily
accessible to the research community. As the storage and bandwidth necessary for
saving and disseminating the data tends to be costly, reaching out across projects is
a difficult and onerous operation.

In essence, big social data has created a research landscape of isolated projects.
One of the costs of working in isolation is redundancy. Each time a research group
aims to analyze a dataset, even if it is relatively well known and central (e.g.,
Wikipedia editorial history or open source software repositories), work starts anew.
Furthermore, as the research products are delivered as papers and findings, the steps
the data moved through, from raw, source data through intermediate data products
and analysis products, are often lost to the idiosyncrasies of each lab’s process.
This makes cross-checking, secondary data analysis and methodological validation
difficult at best to realize. Concerns go beyond research because the systematic
limitations identified by big social data research mirror challenges faced in general
data governance, civic action, education, and even business intelligence.

A number of specific solutions might address the issues commonly experienced
by data-centric researchers and practitioners. For example, common data ontologies,
social scientific analysis protocols, documentation standards, and dissemination
workflows could generate repeatable processes. As new approaches emerge, training
and teaching materials need to be created from the common store of previously
accomplished work. Yet, for this, data professionals need to be trained in data
extraction, curation, and analysis with an eye to integrating data procedures,
analysis, and dissemination techniques.

The cacophony of current processes and the ideal of a “data factory” or an “open
collaboration data exchange” are at two ends of a spectrum. The first is the state of
practice; the second, aspirational. This volume aspires to support the second goal.

The “data factory approach” presented in this volume expresses several sys-
tematic approaches to tackle the challenges of data-centric research and practice.
Our strategic goal is to open and consolidate the conversation on how to vertically
integrate the process of data collection, analysis, and result dissemination by
standardizing and unifying data workflows and scientific collaboration. One of
our goals is to support those who work on projects to create repositories and
documentation procedures for large datasets. At the same time, the ideal of a data
factory needs to advance core methodologies for preprocessing, documenting, and
storing data that can connect information sets across domains and research contexts.
Successful implementation of data factory methodologies promises to improve
collaborative research, validate methodologies, and widen the dissemination of data,
procedures, and results.

Our conceptualization of “data factories” straddles many scholarly communities,
including information studies, communication, sociology, computer science, data
science, sociology, and political science. Industry practitioners focused on market-
ing, customer relations, business analytics, and business intelligence governmental
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and policy analysts might also benefit from this vision. Scholars are piloting the
assembly line in our conceptualization of data factories. We do not expect a “genesis
moment” where a particular factory might emerge into the world due to the genius of
one scholar or her research group. Instead, we expect domain- and question-specific
paths to develop from each “data factory assembly line.” From these initial assembly
lines, practitioners, students, collaborators, and scholars in related disciplines will
have a more solid starting place for their work or discourse. At the same time, we
also hope that as new practices emerge, these will converge rather than diverge
through the common methods discussed in this volume. The “data factory” vision
aims to cross disciplinary boundaries. We hope that social computing researchers,
computer scientists, social scientists, organizational scientists, and other scholars
will in the end develop a common language.

The data factory approach can cover a variety of activities, but in a more tangible
way and as an overture to our volume, its core activities should at the very least
include:

1. Creating standard workflows for data processing and documentation and format-
ting inspired by a variety of projects and which cover several core dimensions:
actors, behaviors, levels of analysis, artifacts, outcomes

2. Determining standard ontologies for categorizing in a standard manner records
(observable units) and variables (fields)

3. Creating tools for easily processing existing and future datasets for standardized
processing and documentation

4. Creating online storage and discovery tools that can easily identify records and
variables across datasets, disciplines, and scientific observation domains

5. Facilitating data recombining by matching on various variables of heterogeneous
datasets

6. Creating methods for documenting and sharing statistical tools and procedures
for analyzing recombined datasets

7. Creating platforms and methods for research collaboration that rely on expertise,
intellectual interest, skills, data ownership, and research goals for connecting
individuals

8. Creating courses to teach these methods and to train graduate, undergraduate,
and mid-career professional

The chapters of this volume address all of these issues, proposing, we hope, an
integrated strategy for data factoring. Although some of the chapters can be read as
“use case,” “how to,” or “guideline” contributions, their value should be seen in the
context of the overall goal, which is to propose an integrated vision to what a “data
factory” research and methodological program should be.

The volume is divided into three large sections. The first is dedicated to the
theoretical principles of big data analysis and the needs associated with a data
factory approach. The second proposes some theoretical principles and ideas
for designing and deploying data factory approaches. The third presents these
approaches in action through case studies of data-based research, best practice
scenarios, or educational briefs.
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The first two chapters are a theoretical overture to the rest of the volume.
The chapter “Accessibility and Flexibility: Two Organizing Principles for Big

Data Collaboration” by Hemphill and Jackson argues that accessibility and flex-
ibility are the two principles and practices that can bring big data projects the
closest to a data factory ideal. The chapter elaborates on the necessity of these two
principles, offering a reasoned explanation for their value in context. Using two big
data social scientific research projects as a springboard for conversation, the chapter
highlights both the advantages and the practical limits within which accessibility
and flexibility principles move. The authors consciously avoid both utopian and
dystopian tropes about big data approaches. In addition, they offer a critical feminist
discussion of big data collaboration. Of particular interest are also the manners in
which specific characteristics of big data projects, especially volume and velocity,
may affect multidisciplinary collaborations.

The chapter “The Open Community Data Exchange: Advancing Data Sharing
and Discovery in Open Online Community Science” by Sean P. Goggins and
collaborators argues that while online behavior creates an enormous amount of
digital data that can be the basis for a new level and kind of social science
research, possibilities are hampered by many shortcomings. Scientists lack the
tools, methods, and practices to combine, compare, contrast, and communicate
about online behavior across domains of interest or temporal intervals. The chapter
presents an effort to (1) specify an Open Community Data Exchange (OCDX)
metadata standard to describe datasets, (2) introduce concepts from the data curation
lifecycle to social computing research, and (3) describe candidate infrastructure for
creating, editing, viewing, sharing, and analyzing manifests.

“Levels of Trace Data for Social and Behavioral Science Research” by Kevin
Crowston opens the second part of the book, dedicated to designing strategies for
data factories. It highlights another set of theoretical challenges brought about by
the big data revolution. Data sources are not “primary” in the traditional sense of
the word; they are most of the time “secondary.” They are not recorded with the
intention to capture human behaviors. Human behaviors are an incidental “capture”
of social media data. While social media, which is at the heart of the big data
revolution, are in the end tools that support and reflect human behaviors, information
is captured incidentally, not purposefully. Check-ins, likes, reposts, and so on reflect
a human act, not the meaning or the context of that act. In other words, data carries
the mere traces of human behaviors as they are captured after the fact. Adopting a
framework adapted from Earth Observation science, the paper proposes an avenue
for advancing from partial to more complete understanding of the actions and
contexts that generated social media data. The author suggests that the framework
may be essential for shaping, sharing, and reusing of big social media data in a data
factory context.

In the chapter “The 10 Adoption Drivers of Open Source Software that Enables
e-Research in Data Factories for Open Innovations,” Kerk Kee inventories factors
that lead to the adoption of open source software production platforms, which
are major sources for data factories, especially in the field of open innovation.
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The inventory goes beyond description. Its goal is to isolate the factors that may
predict adoption. By this, the chapter provides a map for identifying the most
important prerequisites for developing long-lasting open innovation and potentially
data factoring environments. The chapter also raises critical questions community
stakeholders should keep in mind when promoting the diffusion and dissemination
of software applications that will support data factories for open innovations.

The next chapter, “Aligning online social collaboration data around social order:
theoretical considerations and measures,” by Matei and Britt proposes that at
a higher level of abstraction, datasets generated via data factories need to be
comparable on the basis of a common theoretical and methodological ground. The
core proposition is to align datasets around the conceptual framework of “social
order.” Social order is conceptualized as meaningful patterns of interaction that
support convergent growth and evolution of online groups. Capturing social order
can be accomplished through a series of measures, including social entropy and
social network statistics (assortativity and various types of centrality). Theoretical
alignment will make datasets not only comparable but the social scientific enterprise
in the social media/big data realms more reliable and comprehensive.

Squire and Crowston in “Lessons learned from a decade of FLOSS data collec-
tion” open up the third part of the volume, dedicated to practical applications and
teaching initiatives. The chapter presents one of the most ambitious data collection
and dissemination initiatives, FLOSSmole, which is one of the first projects that
embraced a data factory vision. The project is dedicated to understanding how
Free/Libre Open Source Software (FLOSS) projects emerge, survive, are successful,
or die. Embodying the FLOSS ethos, the project relied on a public-facing repository
for data and analyses, encouraging other researchers to use it and contribute to it.
The chapter presents the project emergence, design, goals, and, most important,
lessons learned. Especially relevant for this book are the conclusions regarding
sustainability and relevance of large, data factory-like, data collection, collaboration,
and dissemination.

Mahmud, Hogan, Zeffiro, and Hemphill continue the third part of the volume
with the chapter “Teaching Students How (NOT) to Lie, Manipulate, and Mis-
lead with Information Visualizations.” The authors delve on the intellectual and
pedagogical implications of big data visualizations. Representing data visually
implies simplifying and essentializing information. However, the selective nature
of information visualization can lend itself to lies, manipulations, and misleading
information. To avoid these pitfalls, data analysts should focus and embrace specific
principles and practices that aim to represent complete, contextualized, comparable,
and scalable information, in a way that reveals rather than isolates the viewer and
the problem at hand from the problem space it reflects.

The chapter “Democratizing Data Science: The Community Data Science Work-
shops and Classes” by Hill, Dailey, Guy, Lewis, Matsuzaki, and Morgan introduces
the pedagogical concept of “community data science” and the practices associated
with it. The chapter reviews several years of experimentation in designing course
materials and teaching data science as short workshops and long-form graduate
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seminars. The goals of the learning activities were twofold: to teach new methods for
scientific inquiry and to democratize access to social scientific methods, especially
those applied to big, social media data. The chapter discusses both the philosophy
and the lesson learned from course evaluations.

We hope that the collection of chapters gathered within the covers of this volume
creates a round, complementary vision of what a data factory perspective can
and should be. The ultimate “prize” is to help the next generation of researchers,
teachers, and practitioners avoid the mistakes of the previous generations. Of these,
the most costly is the temptation to reinvent the wheel. Data factoring should and
can help the research and practitioner community root their efforts in a vision of
information gathering, analysis, and sharing that is not only more open but also
evolutionary. New practices and ideas should build and extend the old ones. This
will make data factoring and open social media research more productive and more
inclusive.



Part I
Theoretical Principles and Approaches to

Data Factories



Chapter 2
Accessibility and Flexibility: Two Organizing
Principles for Big Data Collaboration

Libby Hemphill and Susan T. Jackson

Introduction

This chapter’s main argument is that in big data collaborations both the data and
the collaboration ought to be accessible and flexible. We offer reflections and
recommendations on approaches to big data collaboration through the vehicles of
two cases of collaborative big social data research. We avoid both the utopian
and dystopian tropes so often found in conversations about big data while still
offering a critical feminist discussion of big data collaboration. We focus here
on the challenges presented by the volume and velocity of big social data for
multidisciplinary collaborations. We address challenges to organizing both the staff
and data required by such endeavors and ground our discussion in details from two
international collaborations that study political uses of social media.

While we offer general recommendations for approaching and managing big data
collaborations, we do not offer specific “best practices,” ontologies, or metadata
standards for big [social] data. These omissions are purposeful. Instead of offering
a set of practices, we propose a set of principles that should guide decisions about
and within collaborations. Instead of proposing ontologies, we focus on how human
beings, rather than machines, will use data. Making machine-readable ontologies
for data that humans can understand in other ways takes resources and time away
from the intellectual work those data may support. The work of using open data
need not wait for us to make ontologies.
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A Short Note on Ethics in Big Data Collaboration

The ethical standards governing big data research are in flux, but their lack of fixity
does not mean we should ignore the ethical aspects of big data collaborations.
At the very least, we suggest that researchers “only use the data that you need,
and that doesn’t create risk for others” (Metcalf and Crawford 2016, footnote 5).
Privacy is certainly an important ethical concern for big data researchers, and we
argue that researchers must consider the ethics of propensity, access, and data
sharing and combination as well. For more detailed discussions about privacy
and big data ethics generally, we recommend a special issue of First Monday
(“Making data – Big data and beyond” 2013), another in the International Journal of
Communication (Crawford et al. 2014), and recent discussions about the OKCupid
data leak (Markham 2016; Zimmer 2016).

When the goal of analysis is to predict rather than to understand causation
(Siegel 2013), big data presents a unique set of ethical challenges in addition to
issues of privacy. Predictive policing provides a useful case study here: what is the
responsibility of an agency to act on the knowledge that a harmful event is 95 %
likely to occur? What about 80 %? Setting intervention thresholds presents ethical
dilemmas for those with access to the data. As Zwitter (2014) mentions, the impacts
on the people affected by the intervention also must be considered.

By “ethics of access” we mean that researchers must recognize the power of big
data collectors and users relative to the individuals whose behavior constitutes that
data. Andrejevic (2014) calls this the “big data divide” and argues that data mining’s
ability to detect unexpected correlations requires our ethical consideration because
users are often unaware of how their data is used, thereby reinforcing and potentially
exacerbating power imbalances between the users and the data miners. We recognize
another big data divide between researchers who collect big data and those who
wish to analyze it. The disciplinary posture that enables data mining (where running
multiple analyses without making specific predictions about relationships ahead of
time is normal) accounts for some of this divide, and relative differences in technical
expertise are also at play. One common argument for addressing this second divide
is to have data collectors and data analyzers collaborate, but as we discuss below,
such collaborations are difficult at best.

Much like combining disciplinary expertise creates problems for researchers,
combining datasets and separating them from their contexts also can produce
unexpected and even harmful outcomes. One challenge we face in collaboration
is that often, even when working with anonymized datasets, combining datasets can
reveal the identities of individuals, putting them at risk for a variety of harms. King
(2011) offers specific suggestions for social scientists facilitating data sharing while
protecting individuals’ privacy and serves as a useful overview of the issues data
sharing efforts currently face. Existing work on privacy-preserving data mining also
is informative here (e.g., Aggarwal and Yu 2008a, b; Hajian et al. 2014; Sánchez
and Batet 2016; Xu et al. 2016), arguing that privacy protection in data mining and
other big data endeavors is a necessary and promising field of research in itself.
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Overview of Projects from Which We’re Drawing

To ground our discussion of approaches to big social data collaboration, we use
stories and experiences from our work studying politicians and militarism in two
separate international collaborations.

Politicians and Social Media (POSM): This research project conducted from
2011 to 2016 examined the use of social media by politicians in the USA, the
European Union, and the Republic of Korea. Team members on the project were
located in the USA, Cyprus, and Korea. We were interested primarily in Twitter use
by elected officials and its impacts on political news (Shapiro and Hemphill in press)
and constituent communication (Hemphill et al. 2013; Hemphill and Roback 2014).
We leverage data from social media (mainly Twitter but also blogs and websites),
The New York Times, and the US census to address these issues.

Militarization 2.0 (Mil2.0): “Militarization’s social media footprint through a
gendered lens” is a 5-year international collaboration funded by the Swedish
Science Research Council. It is part of the Digitized Society—Past, Present, and
Future framework grant series and is meant to establish a foundation for studying
militarization on/in/through social media. The research covers three industries that
are generally overlooked in the International Relations (IR) literature: conventional
arms production, military videogames, and private and military security. The project
looks at industry actors through a gendered lens to see whether and how we can
understand the persistence of militarism more broadly by focusing on a particular
set of representations on social media. The principal investigator is based in Sweden
and the grant includes teams at universities in the UK and Germany. Across the
project, we focus on YouTube, Facebook, and Twitter.

Challenges in Big Data Collaboration

Big data collaborations face many of the same challenges as other scientific collab-
orations, and we recommend Scientific Collaboration on the Internet (Olson et al.
2008), an edited volume from MIT Press, and a large body of work on collaboration
in science and engineering research (e.g., Bietz and Birnholtz 2003; Bozeman and
Corley 2004; Coleman and Rippin 2000; Corley et al. 2006; Cummings and Kiesler
2003; Olson and Olson 2000) for more information on those fundamental difficulties
(e.g., infrastructure and incentives). A central challenge for scholars to utilizing big
data is a lack of technical skills to gather and access the sheer volume and velocity
of digital data1 and to link that data with conceptual development that moves data

1The designs of social media and their affordances for data scientists also impact scholars’ ability
to work with big social data, for instance, APIs and terms of service change, affecting what data
is available and under what conditions. Tools modify the core functions and impact the behaviors
users are able to engage in – e.g., Twitter is removing usernames and media attachments from
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analysis from standard causation claims (as is usual in conventional large-N studies)
to the correlation claims for which big data scholars call. One area where this type
of hesitation becomes apparent is in sampling. Typically, quantitative IR scholars
rely on large-N datasets that are seen as “complete” in part because the variables
are conceptualized and then populated, whereas big data datasets are more “fluid”
because the data is captured and then can be used to facilitate pattern finding. Big
data can be especially helpful in generating new questions since the “sample” does
not need to be decided in advance. It is possible through identifying patterns to
locate areas for further, deeper investigation (both patterns that show presence and
patterns that show absence) (Cukier and Mayer-Schoenberger 2013).

Differing Technical and Theoretical Skills

This gap between approaches to data would suggest that scholars need to branch
out and collaborate more closely with those who have the technical and method-
ological/method skills for generating, processing, and analyzing big data. However,
collaboration across disciplinary lines presents its own challenges. In addition
to communication challenges across the project and across disciplines, general
software issues also have been barriers. The Mil2.0 project’s computer science
masters’ students collected data, but still some team members have no access to
the data they captured because they do not have the necessary computer science
(CS) skills, e.g., the ability to query in SQL. The students are now learning how to
format the data in ways it can be exported that will be useful, but another difficulty
has been relaying to them in non-CS terms what technical issues they as developers
face in formatting the data.

Conversations about big data often ignore the other side of this methodological
coin—that people with the technical skills to collect and manage big data also lack
the training necessary to responsibly and appropriately analyze that data. Social
theories help us distinguish signal from noise (González-Bailón 2013) and help us
understand how the particulars of the data (e.g., the technology used to collect it,
the vantage point it uses) shape it and the insights we can draw from it (Kitchin
2014; Ribes and Jackson 2013). Also, the idea of letting data tell researchers what
to attend to (as big data evangelists suggest when they call for an end to theory
(Anderson 2008)) is hardly a new concept in social sciences (see, e.g., Charmaz
2006; Glaser and Strauss 1967). As much as big data presents technical challenges,
it presents theory challenges as well, and we turn shortly to the epistemological

the 140-character limit; Facebook does not treat all crisis and find your friend functionality the
same way. The legal milieu about rights to be forgotten differs between the USA and European
Union. This obviously is not an exhaustive list but rather an illustrative one that makes clear that
the changing technological landscape impacts the research we can do.
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debates that big data collaborations must address. First, a brief discussion of why
learning new things—whether technical skills or social theories—is actually quite
difficult, even for professional researchers.

Expertise and Identity

Acquiring new methodological capabilities and theoretical orientations presents
challenges to egos, research agendas, budgets, and time. In general, researchers
face two main issues when considering methodology: determining the appropriate
means for discovering or producing knowledge and determining the validity of the
knowledge produced by different methods (see, e.g., Bird 2012; Jackson 2010).
Scholars are uncomfortable relying on others or on a mid-level (rather than expert
level) of knowledge in order to make methodological determinations.

Along these lines, Bleiker (2015) recently prompted IR scholars to think outside
their respective comfort zones and approach social media and other digital research
using mixed methods—to learn new skills and to work more collaboratively across
methodologies and disciplines. He stated that IR scholars, and we would agree,
generally are resistant to using a variety of methods because of the difficulty in
becoming an expert in multiple, potentially unrelated, methods and because of the
hesitation to work with something in which one is not an expert. As Bleiker points
out, there is pressure in academia to appear to have unquestioned authority and
therefore can limit one’s toolbox to one main methodological approach and one or
two key methods—a limitation that can impact the depth and breadth of big social
data research.

Competing Epistemologies

One of the main challenges present in big data collaborations that include both
technical and social scientists is that people trained in technical fields often
possess fundamentally different research values and subscribe to epistemologies
that conflict with the social scientists’ (or humanists’ in the POSM case) values
and epistemologies.2 What it means to know something in computer science is
different from what it means to know something in communications or in IR,
for instance; similarly, what constitutes a valid or reasonable claim also differs,
sometimes irreconcilably. Referring to the privileging of computational skills (as
compared to other skills such as small-N qualitative methods), Boyd and Crawford

2This statement is not meant to conflate the epistemological differences or conflicts within
the social sciences but rather to point to the broad stroke differences between the logics in
computational or machine-based sciences and those found in the sciences that are people centered.
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(2012) discuss the gendering of skills, and they note (citing Harding and others)
that who asks the questions impacts what questions get asked and what data gets
pulled. McCarthy (2013) reminds us that while technological determinism is not
all-pervasive, there is a hierarchy in terms of who has input in how our systems
work and thus in how we use these systems. These types of issues/hurdles need
much further investigation by social scientists in collaboration with computational
experts inside of and outside of the social sciences.

Both within and across disciplines, the hesitation to consider new ways of con-
ceptualizing and operationalizing what in the past have been contested constructed
variables can pose high barriers to collaboration in big social data projects. For
example, in issues of gender, race, class, sexuality, ability, and so on, there has
been a separation between the positivists and post-positivists that leaves each end of
the spectrum talking past each other or not talking at all. Scholars who do gender
analysis tend toward small-N qualitative studies and generally are resistant to ideas
about incorporating a broader range of empirical indicators into discussions on
“measuring” or tracking data. Quantitative scholars who do include a “gender”
indicator often rely on a sex variable as an indication of gendered behavior (see
below for more discussion).

Because of the predictive quality of big social data, it might be possible to use
these data for intersectional analyses in which the data can transcend the typical
binaries that conventional large-N data assigns to various social categories such as
gender, race, class, sexuality, and so on. That is, we might be able to understand
digital behavior as performance (see, e.g., Boyd 2014; Hogan 2010; Marwick
and Boyd 2014) and in this way capture the intersection of these various social
characteristics and how people perform online. In that way, instead of relying on the
sex variable to make claims about how women and men behave on social media,
we could experiment with various ways to “measure” behavior in terms of feminine
and masculine and how these behaviors intersect with other aspects of people’s
identities. This type of approach is seen, for instance, in the work on gendered
language in which both women and men used more masculine language in social
media spaces considered to be masculine and feminine language on feminine spaces
(Bamman et al. 2014). This example of gender is also useful for illustrating the next
challenge we discuss: concept and variable construction.

Concept and Variable Construction

Another challenge can be explaining concepts and eventual data use across dis-
ciplines, e.g., how the database the technicians are creating does not actually
contain the indicators researchers eventually need conceptually and theoretically.
For example, the Mil2.0 project relies on critical perspectives including gender as a
central aspect of militarization (Jackson 2016). That said, it took several weeks to
explain how the militarism database the Mil2.0 CS students were building would not
have a gender indicator per se since gender should be conceptualized as more than
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a binary sex variable. This is true not just because we are arguing to move beyond
the gender binary, but also because these types of user-indicated variables do not
account for missing data or for when users intentionally choose a different indicator,
e.g., when females designate themselves males in order to avoid online harassment.
Yet, the students asked on several occasions to point out which field/column in the
database would house the gender variable. The two “sides” of this conversation
had very different ways of conceptualizing and therefore operationalizing gender,
difference that stem from the epistemological choices being made.

As stated earlier, because of its sheer volume, big data might make it possible
to operationalize very complicated concepts in new ways. For feminist scholars,
gender is by and large recognized as socially constructed, though a tension between
positivists and post-positivists on how to capture this construction remains. Saran-
takos (2012, p. 67) broadly outlines feminist research claiming that at its foundation
feminist research is “based on the assumption that the world is socially constructed,
displays a relative aversion to empirical positivist methodology, and rejects the
value-free nature of research.” Gender and sex often are used interchangeably
(Caprioli 2004); however by now it should be generally commonly accepted that
the terms are socially constructed. Through big data analysis, we can understand
people’s online behavior and potentially use data to “measure” gender as a social
construct by bypassing the binary sex variable. Within the Mil2.0 project, we
are looking at whether, how, and to what degree empirical data can inform our
understanding of gender in relation to militarization and social media. Both the
quantitative feminist literatures on social media and IR challenge conventional
scholarship to nuance its understanding of gender to more than a binary sex variable
and to rely on theory to make better measures and proxies (e.g., Bamman et al.
2014). But is this possible given the constraints of measuring gender as a social
construct? There have been some inroads into this debate and the use of nuanced
gender variables, for example, Caprioli’s (2009) cluster variables.

However, there are times when sex can be an indicator of gender, e.g., in
measuring gender inequality by mapping where women are and are not in order to
analyze why. Because with Mil2.0 we have an IR project (albeit infused with multi-
disciplinary perspectives) that was proposed as a response to the many deficiencies
in conventional IR, we have to consider the empirical/analytical distinction made
in both conventional and feminist scholarship. A workshop on Feminism and Social
Media Research at the ACM Conference on Computer-Supported Cooperative Work
explored the complications the gender field on Facebook (FB) presents (Hemphill
et al. 2014). The workshop notes point out that while FB has expanded its gender
field to include many more categories for gender representation, FB still imposes its
own notions of what gender is and who gets to select a more complex self-identity.
The workshop participants also formulated a number of questions that reflect a wide
variety of interests and concerns that among other things point to how the exposure
to expanded categories can impact how the wider audience thinks, whether/how
youth might be impacted by having a wider presentation of gender choices, if there
will be an impact on automated advertising, and what role FB and other Internet
giants play in society more generally.
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The questions/issues posed by the CSCW workshop are the same type of
questions we face in the Mil2.0 project because from the social media literature,
we can call into question how performing gender also needs to account for the
impact of external constraints on self-identification and what UGC results through
this performance. To quote the workshop website in response to the question
how can we research gender in social media: “Qualitatively. Quantitatively. Using
mixed methods. With situated data, contextualized data, and thick description.
Acknowledging historical context and noting power structures. Respecting our
subjects by situating social media users as people” (Hemphill et al. 2014). We would
add that we need to keep in mind what impact we want to have and who our audience
is. As this discussion of a “gender” variable illustrates, big data collaborations must
wrestle with how to reconcile incompatible concepts and how to construct relevant
variables that meet the needs of multiple disciplinary perspectives.

We have introduced a number of challenges that face big data collaborations,
especially those that involve researchers from multiple disciplines: technical and
theoretical skill differences, egos and demands of expertise, epistemological incom-
patibilities, and variable construction. In the next section, we propose the principles
of accessibility and flexibility as tools for avoiding or addressing these issues.

Organizing Principles for Productive Big Data Collaboration

We present the principles of accessibility and flexibility alphabetically because their
relative salience will depend on the specifics of each collaboration and the data it
examines. We have chosen to present these organizing principles instead of step-
by-step or more specific advice because of big data’s velocity and variability. These
principles hold for all big data collaboration regardless of the data’s origins or the
investigators’ disciplinary trainings.

Accessibility

Accessibility is the principle designed to address the problems of differing skill
levels and competing disciplinary values. We encourage you to think of your big
data collaboration as an “environment” and strive to make it accessible. We borrow
the concept of accessibility from disability and rehabilitation studies (see, e.g.,
Iwarsson and Stahl 2003). Even there, it has a number of complementary definitions
including “capable of being entered or approached; easy of access; readily reached
or got hold of” (“accessible, adj.” n.d.), and “an accessible environment must match
the abilities of an individual or a group” (Iwarsson and Stahl 2003, p. 58). We are
deliberately invoking a physical space metaphor here—what would it mean for your
collaboration to match the abilities of the individuals involved? How would your
data need to be formatted in order for it to be readily reached? A Heideggerian
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sense of “ready” is useful here: for Heidegger tools are “ready-to-hand” when we
can use them unreflexively (Heidegger and Stambaugh 1996). That means that we
can use the data without having to think about how it came to be. This does not
mean, of course, that we should not be able to access information about how it came
to be but rather than the details of equipment, in this case data, should be transparent
(Dreyfus 1991; Koschmann et al. 1998). An accessible collaboration environment,
then, is one where the tools are transparent and where the individuals’ abilities are
matched.

In practical terms, this means that data and resources necessary for the project
will be available in formats and procedures that match the abilities of all of the
members of the team. That also means that code will be usable even by people
who did not write it and that theoretical arguments will be presented in ways that
non-experts can understand.

Flexibility

The principle of flexibility helps collaborations address the problems of data
velocity, competing disciplinary values, and general challenges to large-scale
collaborative work. We recommend a sort of “agile management” (Anderson 2003;
Morien 2005) approach for researchers to ensure flexibility without sacrificing
rigor or productivity. While agile management will help address challenges in the
collection and analysis of data and the drafting of publications and presentations,
special attention is required in respect to time.

We borrow “agile” from software development where agile management is
characterized by uncertainty, frequent deliverables, and recognizable constraints
(Morien 2005). While generally thought of as something for the IT industry,
collaborative big social data research would benefit from research that has some set
parameters but that is “agile” enough to make adjustments along the way. It requires
transparent, open, and ongoing channels of communication among the project
stakeholders. This approach is useful for bringing together technology and non-
technology staff as well as any different perspectives from within the social science
and/or humanist elements of the team, such that project requirements become more
defined and developed over time as the different parts of the team learn each other’s
“language.” While agile management is a crucial organizational tool, it is just as
important to spell out basic expectations from the start. What is the final deadline?
How will the team work toward meeting that point, e.g., what intermediate timing
goals are appropriate? What kind of style will the output have? How much time does
each participant have to offer for the output? Are there potential hazards that might
need to be accommodated, e.g., unexpected childcare, external work responsibilities
such as advising, or conference organizing? How will the team communicate when
it is time to reorganize?

To illustrate the utility of an agile approach, we use the example of writing a
publication. As with academics feeling uncomfortable outside their own zones of
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expertise, we often do not want to share drafts that are not near actual completion
and looking polished. Nor do we excel at speaking openly and honestly about
expectations of the working process during the collaboration. It is almost as
if writing happens magically—that somehow publications just materialize when
necessary, but obviously researchers know that not to be the case. We recommend
that researchers establish general communication guidelines at the front of the
collaboration, guidelines that include basic respect as well as vocalization about
preferred means for feedback. For instance, some people need to have verbal
communication and would prefer to stop by for a coffee or to Skype if at a distance;
others need feedback in writing. Whatever style, within reason each researcher
should be accommodated along the way.

It is important that team members remain flexible during the collaboration,
whether within the team about conflicting ideas on the output and handling the
iterative process or because of external factors that come up along the way that might
change who is available when for the project. Another potential area that might
require flexibility is with data gathering and issues involving data host’s decisions
on the malleability of data properties. Given the velocity at which big data moves
and accumulates, it is tempting to assume that work must also happen constantly
and at a fever pitch. However, that is just not true. Good scholarship takes time to
think, to analyze, and to write (Mountz et al. 2015), and flexible collaborations are
able to make time for those activities while respecting the whole persons and whole
lives of all the members of the team.

Flexibility with regard to the data itself is also paramount. Rather than propose
rigid ontologies or controlled vocabularies or specific metadata standards, we
recommend big data collaborations use rigorous documentation and flexible data
structures to manage their data. It is helpful here to think of each collaboration as
a data sharing effort. Doing so foregrounds the challenges of documentation, data
context, tacit knowledge, data quality, and misaligned incentives that plague broader
data sharing efforts (Bietz and Birnholtz 2003). These challenges are exacerbated
when researchers disagree on the types of problems to be addressed and the specific
methods to be employed (as we have shown in common in big data collaborations).
Now that storage costs, even for big data, are declining, it is becoming possible to
afford to store and share data in multiple formats, rendering it accessible throughout
the team.

All relationships require some kind of trust, both in the other people involved and
in yourself, to be effective. Trust is important as researchers that we know what we
can and cannot do and are willing to learn, that we offer to others what is reasonable
but challenging and fun at the same time, and that we trust in our partners to be
open and honest as well. Trust affords flexibility by ensuring reliability (Das and
Teng 1998)—it is possible to be flexible in accommodating external responsibilities
when I know I can rely on my colleague to do her part.

Trust also affords flexibility through face-saving. One important lesson learned
from the projects referred to here is the importance of knowing when to admit you
do not know something, when to admit that you could use some help, and when
to be willing to learn something new (even if it will not make you an expert in
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that something new). As mentioned above, threats to one’s identity as an expert are
especially challenging for researchers, and collaborative partners must be able to
trust both one another’s expertise and its limits. The learning curve from trying to
stay within your respective discipline and use the same old toolbox is really steep. It
might take time to learn a bit of something new, but it seems to take a lot longer to
reinvent the wheel. We encourage researchers at the very least to try a new method
and a new way of looking at things and to work with others who not only challenge
your notions but also can offer support in developing them further. We, the authors,
did just that together and have had a fruitful and fun collaboration that has led to
co-convened workshops in New Orleans (USA) and Tübingen (Germany), joint
authorship, and the plan to look for ways to hold data trainings to bring together
technical and nontechnical academics to do big social data research.

Conclusion

We proposed accessibility and flexibility as guiding principles for successful big
data collaborations. Together, these principles prepare researchers to address the
challenges posed by interdisciplinary collaboration, the volume and velocity of
big data and its associated systems, and the constraints created by researchers
having other responsibilities. Using the environment metaphor when talking about
accessibility encourages us to think about how skills and abilities may differ
across the team. The agile approach to project management popular in software
development provides a useful model for managing flexible research collaborations.
These principles provide a common frame for big data collaborations that remains
adaptable to the specific disciplinary and infrastructural positions collaborations
face, and we hope you find them as useful as we have in our own work.
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Chapter 3
The Open Community Data Exchange:
Advancing Data Sharing and Discovery in Open
Online Community Science

Sean P. Goggins, A. J. Million, Georg J. P. Link, Matt Germonprez,
and Kristen Schuster

Introduction

In social computing research today, it is unlikely that any two papers from different
labs examining Wikipedia, GitHub, eBird, Facebook, Twitter, or any other space
where open online communities emerge will have (a) clear descriptions of the
provenance of their data, (b) open access to scripts and anonymized samples of the
data, (c) complete methods descriptions, or (d) consistency between them, even if
the research questions are similar. As scientists, we should recognize that this state
of affairs represents a hole in our process; not a hole to acknowledge and accept,
but a scientific hole we should actively seek to close. The development of the open
collaboration data exchange (OCDX) is one attempt to close this whole.

Open online communities (OOCs) are fundamentally distinct phenomena that
facilitate the collective construction of flexible, distributed, and nonhierarchical
forms of organization. The emergence of widely available, highly flexible, inter-
active information infrastructure technologies significantly altered the universe of
feasible organization structures and strategies. OOCs represent a new class of
organizing solutions, in which individuals self-organize in order to collaboratively
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produce any number of artifacts and experiences. OOCs differ from other popular
online structures, such as crowdsourcing platforms or online social networks
in significant ways. In crowdsourcing, the firm or client proposing the project
typically controls the decision-making process. In online social networks, organized
collective production is not usually a goal for participants.

Online behavior creates an enormous amount of digital data that can be the basis
for social science research. Such behavioral data has been used for research in
diverse online contexts, such as scientific advances (Irwin 1995), online learning
outcomes (Bishop and Verleger 2013), political use of social media (Nahon and
Hemsley 2014), citizen engagement (Tandoc 2014), group identity formation (Ren
et al. 2007), and valued health benefits (Moorhead et al. 2013). To date, however,
this science has been conducted piecemeal, one Internet address at a time, often
without social or scholarly impact beyond the site’s own stakeholders. Thus, there
is an urgent scientific need to make sense of human behavior across technologies
and an urgent human need to better understand how to apply online technologies
for social benefit. To address these scientific and human needs, we propose a cyber-
infrastructure that will enable researchers to effectively look across online contexts
to explain, in more general terms, (1) how online interactions affect participants,
groups, and society as a whole and (2) how to design online communities and
platforms to maximize their positive effects.

Addressing these issues requires the systematic sharing and analysis of datasets
that are currently fragmented and unavailable to most researchers. Scientists lack
the tools, methods, and practices to combine, compare, contrast, and communicate
about online behavior across location and over time. This is not because the
differences across sites are poorly understood. Goggins et al. (2013), for example,
provide a coherent ontological framework for classifying online human interactions
as principally between people and each other (i.e., online health forums) or people
and artifacts (i.e., ebird.org). To advance science beyond a deluge of studies focused
on singular sites for online human interaction, we develop an infrastructure where
scientists can systematically share, annotate, analyze, and integrate data from
multiple online sources.

In biology, GenBank enables scientists to share, describe, and leverage data from
hundreds of labs, accelerating the development of knowledge about the human
genome. Like GenBank, we are building the infrastructure for social scientists,
computational social scientists, and citizens to make corresponding advances in our
understanding of online human interactions.

Specifically, the large volume of online behavioral data, combined with its poor
description to date, creates a number of persistent research challenges that (1)
limit the discovery and reuse of large datasets built from these traces, (2) hinder
researchers in combining or comparing datasets, (3) fail to provide proper attribution
for those creating the datasets, and (4) make the study of how scientists are creating
and using datasets in scientific inquiry difficult. In short, scientists lack the tools,
methods, and practices to combine, compare, contrast, and communicate about
online behavior over time and across online locations.

http://ebird.org
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The Particular Challenge of Multidisciplinary Research

Unlike GenBank, social computing researchers do not have a common ground that
is connected to fundamental, life sciences like biology or genetics. Social computing
and “big data” research draw scholars and practitioners from a myriad of different
disciplines (e.g., computer science, sociology, mathematics, economics, physics,
anthropology, organization science, communications). Each discipline engages in
research about OOCs from its own traditions and points of view. For example,
management scholars in free and open source software (FOSS) focus on developing
theories of collaboration on these projects drawn from rich, qualitative methods
(Howison and Crowston 2014), while software engineering scholars address devel-
oper coordination tools (Blincoe et al. 2012) and specific issues of how to make
sense of electronic trace data through software repository mining (Bird et al. 2009).
Human computer interaction (HCI) scholars in FOSS are particularly focused on
how tools might be designed to support different modes of collaboration (Dabbish
et al. 2012). The research contexts are identical, but differences in data and method
prevent the development of coherent understandings across these disciplines. For
these reasons, then, the work of building a data exchange will need to work across
disciplines.

Spanning intellectual disciplines is potentially risky. Developing new interdisci-
plinary practices and methodological approaches could conflict with a discipline’s
current discourse and findings. However, the potential benefits of interdisciplinary
OOC work are significant for both science, which gains leverage from integrated
research models and the corresponding advancement in knowledge, and society,
which is growing increasingly reliant upon OOCs.

How one goes about trying to span disciplines involves a) surrender of a
singular, disciplinary view of the process of science and b) actively working
across disciplines. Unlike established journals within a discipline, where editors and
associate editors help to reify practice, top-down mechanisms for more systematic
OOC research across disciplines are not likely to succeed. Within this chapter, then,
we present a set of flexible and adaptive methods, tools, and data structures for
building multidisciplinary social computing and “big social data” practice.

Open Community Data Exchange

Online, behavioral datasets must be described consistently in order to be discov-
erable by others, compared with each other, and studied in aggregate. Core to this
proposal is advancing the Open Community Data Exchange (OCDX), a metadata
specification and robust infrastructure for long-term sustainability. This project
specifically builds on the prototyped capability of the OCDX, including a bill
of materials for datasets (OCDX manifest) as derived from the OCDX metadata
specification (Fig. 3.1).
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Fig. 3.1 The relationship between the OCDX metadata specification, the OCDX manifest, and
datasets. The relationship is similar to the relationship between the W3C specification used to
define HTML5 and the actual use of HTML5 in practice. The OCDX metadata specification
contains details about metadata fields including acceptable formats and cardinality. The OCDX
manifest is the instantiation of those details in practice

The precise metadata describing fundamental dataset information and recom-
mended analytical practices are included in the OCDX manifest. The OCDX meta-
data standard, related OCDX manifest, and supporting OCDX cyber-infrastructure
and tooling (collectively referred to as the OCDX Initiative) have been initially
designed and tested by members of several scientific communities, including social
science, computer science, and information systems. To date, the OCDX initiative
has been evaluated and advanced through academic and practitioner workshops
in Vancouver (Morgan et al. 2015), Copenhagen (May 2015), Omaha (January
2016), San Francisco (CSCW, February 2016), Chicago (May 2016), and Portland
(February 2017).

Research Approach

Technology alone will not bridge the gaps identified at the outset. Advancing
scientific practices, which require people, is both more complex and more critical
for success. To meet this challenge, our project will use engaged scholarship as
a dominant methodological approach within which more localized methods are
applied (Chiasson et al. 2009), as illustrated in Fig. 3.2.

The pluralist approach provides context for our project and frames the setting
within which we manage our project. It enables refined analyses and theoretical
representation of community development, standards creation, and scientific prac-
tices that emerge as part of the OCDX initiative (Weick 1989). For instance, within
our workshops, we may conduct surveys before and after the event and interviews
at the event. But, since the tools we are deploying and using in the workshops are
themselves trace data collectors, we can use that data in conjunction with the surveys
and interviews to create a holistic view of the experiences and events that occurred
during the workshop.

To advance the OCDX initiative, a new open online community science cyber-
infrastructure is designed, deployed, and managed through four integrated tracks
within we will participate in engaged scholarship and our localized methods. Each
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Fig. 3.2 Engaged
scholarship as the research
approach within which
localized research methods
are applied in the proposed
project

track focuses on specific work in support of this goal. Additionally, research
questions for each track are geared toward helping us understanding how the
OCDX initiative can both improve and learn from scientific practice in the ongoing
refinement of our infrastructure.

Infrastructure Implementation Track 1 is aimed at creating a robust and sus-
tainable infrastructure that supports OCDX manifest creation, governance, sharing,
and access. In this effort, Track 1 advances analytic systems for the aggregation,
visualization, and analysis of OCDX manifests and their use in scientific activities.
We accomplish this through fostering our relationships and scaling our development
efforts with the Wikimedia Foundation for robust information system platforms.
Further, we will populate the information systems with an initial corpus of manifests
by partnering with FLOSSmole (Morgan et al. 2015) to annotate their archives and
with GitHub for continuous open online community data sourcing. Connecting the
OCDX initiative with information organizations (Wikimedia), communal engage-
ments (GitHub), and scientific endeavors (FLOSSmole) strengthens ties with our
foundational, corporate, and academic partners, fostering diverse support for the
OCDX initiative. Track 1 addresses the following questions:

(a) How is massive online community data infrastructure understood, advanced,
and fostered?

(b) What are the impacts of infrastructure design decisions on the sharing and
analysis of online community data?

Deep Dives Track 2 advances the integration of the ODCX infrastructure into sci-
entific practices associated with dataset development, management, and discovery.
We accomplish this by engaging with several ongoing research projects as deep-dive
cases that will use the OCDX infrastructure as part of their research workflow. We
will explore the ways research teams use the OCDX infrastructure in the creation
of ODCX manifests. These partners include Syracuse University (political election
campaigns on social media), the University of Missouri (focusing on online health
support), and projects at the University of Maryland (relating online behavior to
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offline actions). In addition to creating a corpus of OCDX manifests generated
from different types of ongoing open online community research, efforts in Track 2
will provide feedback to improve the OCDX metadata specification and supporting
infrastructure. Track 2 addresses the following questions:

(a) How do formalized architectures for online community data fit within the
research workflow impact the practice of science?

(b) How can individual use cases be studied in order to gain insight to affect the
development of the sharing and analysis infrastructure?

Outreach and Sustainability Track 3 is aimed at the outreach and sustainability of
the OCDX initiative, requiring ongoing efforts to engage and grow the community.
In Track 3, we actively connect with academic and practitioner participants through
two types of OCDX-sponsored workshops recurring a total of ten times over the
course of the project. The first type of workshop includes hands-on engagement
with the OCDX manifest and infrastructure as participants come to understand
and advance the OCDX initiative. In this workshop, participants will integrate
existing datasets with OCDX manifests and infrastructure to highlight successes and
concerns. The second type of workshop will include relationship building between
participants through presentations of how the OCDX initiative is currently being
designed, developed, and deployed. The aim of the second workshop is to high-
light real-world implementations, stimulating points of common interest between
participants. Both workshops are constructed with the goal of building outreach
and improving sustainability of the OCDX initiative through regular and engaged
community building activities. Track 3 addresses the following questions:

(a) What are key motivators for people to share their online community data and
analyses?

(b) What is the impact of outreach and sustainability efforts on promoting the
sharing of such data?

Science of Science Research Track 4 is primarily aimed at advancing the science
of science, with a focus on data-intensive open online communities. In the fourth
track, we study the scientific enterprise using OCDX manifests and infrastructure
created from Tracks 1 to 3. In the science of science track, we think of the corpus
of OCDX manifests as a kind of human trace data that we can study in similar
ways that researchers study open online communities. We will develop analytical
techniques, as well as empirical and theoretical models that leverage the OCDX
manifests to help reveal the ways data-intensive open online community science
takes place. We will also link our findings with other published scientific data
(e.g., citations) to identify factors related to scientific productivity and impact.
We will demonstrate ways that the OCDX initiative will be useful in informing
scientific policy associated with the systematic sharing and analysis of datasets.
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Feedback from Track 4 will be used to improve the OCDX metadata specification
and infrastructure in ways to specifically support the science directly associated with
the OCDX initiative. This is a sharp contrast to GenBank, which was designed to
support sharing and discovery of data, but not to directly support the study of the
scientific endeavor itself. Track 4 addresses the following questions:

(a) How does analysis of such data sharing initiatives reveal new scientific practice
and inform science policy?

(b) What is the impact of science of science findings on online community data
sharing?

The research questions in each track help us understand why and how participants
engage the OCDX initiative, ways in which the OCDX metadata standard, tooling,
and infrastructure are engaged and ways that scientific metadata reveals how data-
intensive research takes place and becomes part of scientific practice. Figure 3.3
illustrates the four interrelated tracks.

Fig. 3.3 Project tracks for facilitating the description and use of open online community data
across scientific practice. Note that infrastructure and practice include all of the tools, metadata,
repositories, hardware, and scientific practice that is reflexively constructed across the four tracks
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Expected Outcomes

The OCDX initiative provides metadata for researchers’ intent on sharing and
discovering open online community data and studying the enterprise of open online
science in hopes of informing scientific practice and policy. We are working on
three primary artifacts: a metadata specification, tooling, and infrastructure. Each is
introduced here.

A Manifest for OOC Data

The OCDX’s interest in inclusion and collaboration supports the integration of
multiple technical and theoretical models for dataset evaluation and documentation.
Specifically, interests in balancing the development of infrastructures and technolo-
gies with the evaluation and discussion of ethical and concerns framed the need for
a metadata schema capable of capturing and reflecting the value and complexity of
OOC datasets. The OCDX metadata specification builds on an existing data curation
lifecycle model and prior efforts to standardize open source project metadata,
including the Linux Foundation’s Software Package Data Exchange (SPDX).

Building on the Data Curation Lifecycle Model

The OCDX workflow uses the DCC Curation Lifecycle Model (Fig. 3.4) to
guide a series of iterative tasks that support the identification of actors, actions,
and technologies that contribute to the collection, creation, and maintenance of
records. Based on these iterative tasks, it has been possible to foster discussion and
collaboration about characteristics of OOC datasets while simultaneously evaluating
methods and technologies for replicating scholarship that uses them.

The lifecycle model contains six total rings, while each requires a series of action
and contributions. Establishing iterative tasks maximizes participant input on the
quality and accuracy of specific metadata fields and/or entire metadata records.
Using a data curation lifecycle that promotes flexible and ongoing data management
has made possible to integrate multiple points of view into the standards for
metadata creation and the interface users interact with while creating records for
datasets. To augment the coherence of the curation practices expressed in the
lifecycle, an additional metadata workflow model was adopted (Fig. 3.5).

Identifying areas of overlap in metadata creation and/or revision practices
created additional space for conversations among researchers, which has provided
opportunities for different areas of expertise and interest to take priority, but not at
the cost of overarching interdisciplinary needs. In general, there are two different
goals of establishing a workflow: first, establishing where to collect information
about datasets from and, second, outlining best practice guidelines for metadata
creation, revision, and maintenance.
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Fig. 3.4 DCC Curation Lifecycle Model (Jisc n.d)

Fig. 3.5 Metadata evaluation and creation workflow (Maron et al. 2015)
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Taken together the DCC Curation Lifecycle Model and metadata workflow
established standards for metadata entry and revision that synthesize research
interests and needs while simultaneously recognizing the need for flexibility
and diversity in some fields based on disciplinary and technological practices.
Developing metadata standards that reflect the interests of researchers from a variety
of academic disciplines will enhance the variety and quality of contributions to
the OCDX. Keeping these interests and goals in mind led to the development of a
manifest, which consists of two documents: a metadata schema and documentation
outlining how to use the schema.

The manifest consists of two documents: a schema and documentation outlining
how to use the schema. The schema contains four general descriptive categories
(agent, description of dataset, description of data source, metadata creation) and
within these four general descriptive areas a series of refinements that facilitate
more specific descriptions of documentation, processing, and accessibility of a
dataset. Documentation outlining how to use the metadata schema provides structure
and guidance on the function of each field. Offering guidelines on implementation
supports consistent description of OOC datasets, which furthers the OCDX’s goal
to support interdisciplinary scholarship.

Establishing the structure and purpose of the manifest will support further
discussions of interests, needs (technical and practical), and resources needed to
perform interdisciplinary research on OOCs. Additionally, building a manifest that
reflects interests and needs of scholars participating in the OCDX will make it
possible to describe how metadata can enhance projects undertaken by other work-
ing groups contributing to OCDX and, thus, provide opportunities for enhancing
the infrastructure and tools available for recording information about datasets.
Also, it will promote further opportunities for courses and research relating to the
exploration and analysis of open online communities.

Building on Open Source Metadata Specifications

The OCDX metadata specification is used to define metadata manifests to accom-
pany partner datasets. Metadata specifications have proven valuable in bridging
and connecting community members aiming to share information in the overall
advancement of community health and sustainability. The Software Package Data
Exchange (SPDX) community is a Linux Foundation initiative aimed at explicating
license and vulnerability metadata for software packages as exchanged throughout
software supply chains (Germonprez et al. 2014).

The OCDX metadata specification represents a key artifact from which tooling
and infrastructure are derived. It is expected that through these relationships, the
OCDX metadata specification will be better understood in practice, leading to
its refinement to potentially include such fields as author annotations, dataset
dependencies, and dataset lifecycles. A condensed form of the current OCDX
metadata specification is shown in Fig. 3.6.
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Fig. 3.6 The OCDX metadata specification in condensed form

The advancement of the OCDX metadata specification alone will move us
a considerable way toward the goal of making data more reusable by a larger
group of scientists. Making sure that a large percentage of open online community
datasets have explicit OCDX manifests attached to them that describe what the
dataset is, how it was collected, and what permissions are provided for reuse of
the dataset will make it much easier for scientists to identify datasets of interest
to them, to understand datasets that were used in other contexts, and to use those
datasets in their own work. Moreover, this would create labeled and related datasets
demonstrating community activity, and such a set of related datasets becomes an
object of study in its own right. Technology that enables the easy use of related
OCDX manifests will make this work much more powerful, which is what we will
describe in the next section.

Tooling and Infrastructure

Stemming from the metadata specification, we are advancing robust tooling through
participant engaged design, development, and deployment activities. These activ-
ities involve our foundational, academic, and corporate partners. Foundationally,
we are partnered with the Wikimedia Foundation to integrate OCDX tooling
with existing toolkits including JupyterHub and Wikibase. Academically, we are
partnered with open online community researchers to provide OCDX tooling aimed
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at advancing and understanding scientific practice. Corporately, we are partnered
with GitHub to integrate OCDX tooling with continuously sourced community
metric data. OCDX tooling includes support for the generation, management, and
consumption of OCDX metadata standard-derived manifests.

We propose to design and build an infrastructure and toolset that enables
the sharing of electronic trace data from a wide range of systems, including
open online community systems, in such a way that the content, structure, and
associated analysis tooling for each dataset are explicitly noted in an instance
of the OCDX manifest. The proposed manifest will advance the present one by
describing the entire research ecosystem around an online behavioral dataset.
Advancing this technical goal makes the analysis of similar online environments and
the identification of similar analytical strategies practical and possible for the first
time.

OCDX infrastructure is aimed at supporting services by which OCDX metadata
standard-based tooling is made publically available for scientific communities. The
OCDX infrastructure will support public instances of all OCDX tools by which
OCDX manifests are produced, managed, and discovered. Finally, the OCDX
infrastructure will be available for local deployments via full source, install scripts,
and documentation provided through our GitHub repository.

Conclusion and Future Work

Through participant engaged design, development, and deployment, we consider the
OCDX initiative as an evolving endeavor where points of interest are identified in
ways that the metadata standard, tooling, and infrastructure are used, adapted, and
validated. In this chapter, we outlined the background and goal of this OCDX project
and described our methods and outcomes. We believe big social data research will
benefit from this work, but the path will surely not be linear.

One source of nonlinearity in this work is the substantial diversity in scholarly
approaches. We covered that at the outset. Another challenge emerged through our
work. As it turns out, there is a continuum of structured data generated and required
by different OOC’s and researchers who approach them. That continuum goes from
“Must have structured, specified data” to “Hey, our data is conversations and there
is little structure around those.” Most of the lessons and candidate approaches we
present work across both the structured and unstructured OOC datasets.

Some of our work extends from work on building manifest descriptions for
the Linux Kernel and GenBank. The Linux Kernel’s OSS development is most
similar to our work. The intrinsic need for stability is a characteristic it shares
with GenBank. In the case of GenBank, what is negotiated are representations of
experimentally and computationally defined abstractions of biology and genetics.
In the case of the Linux Kernel, we continue to refine the specification of the
OCDX metadata standard as well as the tooling and infrastructure required for open
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online community scientists to find, understand, create, maintain, and share dataset
metadata. We invite scientists who have datasets to compile an OCDX manifest and
provide feedback.
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Chapter 4
Levels of Trace Data for Social and Behavioural
Science Research

Kevin Crowston

Introduction

The social and behavioural sciences are said to be on the verge of a data-driven
revolution. There is great interest in the scientific inferences that can be drawn
from digitally captured records of human activity, such as in an online community,
user-generated content systems, search engine searches, cellular phones or digital
badges (Lazer et al. 2009; Manovich 2012), what Howison et al. (2011) call trace
data. As Agarwal et al. (2008) stated: “Most transactions and conversations in these
online groups leave a digital trace ... this research data makes visible social processes
that are much more difficult to study in conventional organizational settings”. For
example, researchers have noted that social media data show great potential to
address long-standing research questions about human behaviour (Edwards et al.
2013). Chang et al. (2014) go as far as to suggest that the rise of big data is leading
to a “paradigm shift in scientific research methods”, what Watts (2007) called a
“21st century science”.

However, these claims about the transformative capacity of big data for the
social and behavioural sciences need to be viewed with caution. Records of online
behaviour certainly amount to terabytes of data, but these data are of a very different
sort than social and behavioural scientists would obtain from more traditional
research approaches such as surveys or experiments and so require different research
approaches. The most closely related commonly used data are events data in
international relations (e.g. McClelland 1967), and consideration of the issues in
using these data provides some insights.
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The goal of this chapter is to discuss differences between trace data and
traditional social and behavioural science data and the implications of these
differences for using trace data for social and behavioural science research. The
main contribution of the paper is a more precise vocabulary for talking about the
processes of using trace data and the products of these processes that clarify different
levels of processing. The framework also highlights issues involved in sharing and
reusing trace data.

Framework: From Trace to Variable

Howison et al. (2011) identify three differences between long-used sorts of social
and behavioural research data and trace data: trace data are event-based, longitudinal
and, most importantly, found, rather than created to support research. These features
are found in other settings, e.g. political scientists have built databases of events
data (e.g. the World Event/Interaction Survey, WEIS (McClelland 1967)), and
longitudinal data are common across many fields.

The difference that is key for our argument is the final point. Data from scientific
sources such as surveys or experimental measurements are most often purpose-
fully collected to measure constructs of theoretical interest. Rigorous quantitative
research employs carefully refined instruments with known psychometric properties
to ensure that the instrument reliably measures what it should. (Poorly designed
research might be sloppier, but is hard to argue as a model for future research.) In
contrast, social media and other trace data are records of human activity without
inherent theoretical import. As Howison et al. (2011) say, “Wikipedia was not
designed to test theories about knowledge production, nor are corporate email
systems designed to collect research data”. Rather, these data need to be interpreted
to be useful for social and behavioural scientists.

In some ways, the interpretive flexibility of trace data is an advantage. They
reflect actual behaviour rather than opinion, belief or attitude and can be used
for different kinds of studies, unlike data from most surveys or experiments that
measure specific constructs. The implication though is that trace data require
considerable additional processing to be useful for research. Unfortunately, the
term “data” is overloaded and does not distinguish between different kinds of data,
processed or not, leading to potential confusion and unwarranted optimism about
the utility of found data. A framework is needed to sort out the different kinds of
data. The main contribution of this chapter is to develop such a framework.

Levels of Data in the Earth Sciences

This situation—having multiple kinds of data with different levels of scientific
interpretation—is by no means unique to the social and behavioural sciences or
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Table 4.1 Levels of Earth observation data

Level Definition

Level 0 Reconstructed, unprocessed instrument/payload data at full resolution; any and all
communications artefacts, e.g. synchronization frames, communications headers,
duplicate data removed

Level 1A Reconstructed, unprocessed instrument data at full resolution, time referenced, and
annotated with ancillary information, including radiometric and geometric
calibration coefficients and georeferencing parameters, e.g. platform ephemeris,
computed and appended but not applied to the Level 0 data

Level 1B Level 1A data that have been processed to sensor units
Level 2 Derived geophysical variables at the same resolution and location as the Level 1

source data
Level 3 Variables mapped on uniform space-time grids, usually with some completeness

and consistency
Level 4 Model output or results from analyses of lower-level data, e.g. variables derived

from multiple measurements

From raw data as collected to processed and synthesized data Parkinson et al. 2006

to trace data. It is thus instructive to examine how the distinctions among data with
different kinds of processing are addressed in other disciplines. The earth sciences
provide a particularly helpful framework, as the kinds of data created by processing
satellite observations have been given different labels with clear definitions in this
research community.

The NASA Earth observation program distinguishes data at six levels of pro-
cessing, as shown in Table 4.1 (from Parkinson et al. 2006). Data at each level
is derived from the data at the lower level through defined data-processing steps.
For example, consider a satellite collecting data about the Earth using a sensor
that receives some signal from the Earth (e.g. light or radar reflections) that can
be interpreted as evidence for a geophysical variable (e.g. temperature or sea wave
heights). To move from Level 1 to Level 2 data in the framework, for example,
data from the sensor are interpreted to reveal geophysical variables, e.g. certain
wavelengths of light indicate particular kinds of vegetation; particular scattering of
radar indicates wave heights. In the earth sciences, Level 0 and 1 data are generally
not useful for research, other than for studies of the properties of the satellite and
its sensors. Instead, earth scientists want Level 2 or 3 data, data about a geophysical
process, plotted on a map. That is, rather than a time series of voltages from a sensor,
scientists want a map showing what vegetation is where (for example).

Example: From Tweet to Variable

We can apply the Earth observation data framework to the case of trace data. We use
as an example data from the social media platform, Twitter. By analogy to Table 4.1,
we define different levels for Twitter data, as shown in Table 4.2. Level 0 are the raw
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Table 4.2 Levels of twitter data

Level Definition

Level 0 Raw tweets
Level 1 Raw tweets annotated with ancillary information, e.g. sender information
Level 2 Derived social and behavioural science variables at the same resolution as Level 1

(i.e. coded tweets)
Level 3 Derived social and behavioural science variables at unit of analysis of interest (e.g.

data about individuals)
Level 4 Model output or results from analysis that merges multiple sources of data

tweets, e.g. collected from a Twitter API. Level 1 adds metadata about the tweets
as they were collected (e.g. time, date, sender). Level 2 interprets the tweet content
as indicating some social and behavioural science variable of interest (e.g. political
discourse, topic or sentiment). Level 3 aggregates evidence from multiple tweets
to develop data about the unit of analysis of interest for the study: an individual, a
political figure, a topic, etc. Note that our interpretation of this level for trace data
differs somewhat from the definition of Level 3 in the original Earth observation
framework, which refers to mapping data to a uniform space-time grid. Here we
generalize that concept to mapping data to other conceptual spaces. Finally, Level 4
is created by linking data from the tweet corpus to data from other datasets or to a
model.

The same distinctions can be made for other kinds of trace data. For example, a
study about leadership in an open source project (Crowston et al. 2010) might draw
on developer emails (Level 0) (see Table 4.3), annotated with information about
the sender (e.g. the role in the project, Level 1), coded for evidence of leadership
behaviours (Level 2), aggregated to suggest which members of the project exhibit
signs of being project leaders (Level 3) and linked to other data about contributions
or project outcomes (Level 4).

As with satellite data, for social and behavioural science research, Level 0 or 1
social media data are unlikely to be of much interest for research: raw tweets or
email messages by themselves and “as is” are not that useful for research. However,
it is at this level that we see the explosion in available data. To test theory, social
science researchers need data at Level 3, which corresponds to the kind of data a
researcher would get from a survey. Unfortunately, such data are much less readily
available. An implication for development of data archives is that it would likely be
more useful to focus these on higher levels of data.

Discussion: Moving Up the Levels

The issue then is how to process data to move from Level 0 to Level 3 or 4.
For geospatial data, scientists have developed data-processing algorithms based on
their knowledge of the physical properties of the satellites and sensors and the
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Table 4.3 Levels of open source development data

Level Definition

Level 0 Raw email messages
Level 1 Raw email messages annotated with ancillary information, e.g. sender information
Level 2 Derived social and behavioural science variables at the same resolution as Level 1

(i.e. coded email messages)
Level 3 Derived social and behavioural science variables at unit of analysis of interest (e.g.

data about individuals)
Level 4 Model output or results from analysis that merges multiple sources of data

geophysical properties of the systems being observed: e.g. known performance
of instruments converting radiation to a sensor signal, mathematical models for
translating between satellite position and orientation to the observed location on
the ground or models of what different vegetations look like to support inference
from an observed intensity of light at a particular wavelength to geophysical data
about ground cover. Even with this level of theoretical development and knowledge
of the geophysical processes, automated algorithms are not always sufficient by
themselves. For example, for best precision, images might have to be adjusted
by hand by manually matching known benchmarks on the base map. Predicted
geophysical variables (e.g. vegetation) might need to be ground-truthed to verify
the reliability of the interpretation.

Interpretation of data is also a common analysis approach in social research.
Qualitative researchers frequently employ the technique of content analysis (Krip-
pendorff 2004) to code textual documents for theoretical constructs of interest. In
the framework above, content analysis is a technique to move data from Level 0
or 1 to Level 2. The political science databases described above take newspaper or
wire series press reports as Level 0 data and code them against an event coding
scheme that identifies actors and actions of theoretical interest (Veen 2008). For
example, WEIS’s (McClelland 1967) coding scheme codes events reported by The
New York Times into 61 categories of action. Researchers employing observational
techniques develop coding schemes that identify which observed behaviours are of
interest, essentially skipping Levels 0 and 1 and collecting data directly at Level 2.
Considering social media again, tweets might be interpreted as indicating support
for or opposition to a political candidate.

Unfortunately, moving up levels of social media and other social and behavioural
trace data is less routinized and predictable than for Earth observation data and
even for international relations. Some of these problems are inherent in the
nature of the social and behavioural sciences. The processes by which the social
and behavioural constructs of interest (e.g. leadership) get reflected in recorded
behaviours (e.g. emails) are much less regular than the corresponding geophysical
processes (e.g. vegetation reflecting light). But there are also differences that reflect
the rigour and reproducibility of the data processing in research practice. At present,
social and behavioural researchers typically derive variables from observed data
in their own idiosyncratic ways. As with satellite data, processing may require
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manual intervention and validation, making the process hard to replicate or even
to completely describe. And unfortunately, provenance of data is often not well
recorded, so how these steps were carried out may be unclear to those reading the
research. For example, Liang and Fu (2015) found that they could not reproduce the
results of six out of ten studies of Twitter they examined using a random sample
of tweets, which they attributed to “variations of data collection, analytic strategies
employed, and inconsistent measurements”.

We next discuss the specific issues involved in each step of the chain from event
to Level 4 data to further explore the issues involved in using trace data for social
and behavioural research.

Collecting Level 0 Data

Level 0 is the lowest level in the framework, but it is worth noting that even Level
0 data has had some processing. As noted in Table 4.1 above, satellite data is
processed to remove communications artefacts. For trace data or social media data,
there is a comparable process of removing artefacts from the data collection that
needs to be documented (e.g. removing spam emails from an email archive before
analysis). However, additional problems can arise. Howison et al. (2011) point out
that collecting trace data from an information system raises a number of validity
issues. They focus on validity issues for social network analysis, but a number of
their issues are more general. Two relate in particular to the collection of trace data
from an information system, that is, the creation of what we are labelling Level 0
data: “system and practice issues” and “reliability issues”.

The first issue refers to the need to understand actual system use in order to
be able to interpret the data created. An example given by Howison et al. (2011)
is a group-support system that requires individuals be team “members” to access
team documents, leading to many people being listed as members mostly to enable
document access. The point is that the system definition of a team member in this
case is different than the offline definition, posing challenges for interpreting the
system data about membership.

The second issue refers to the need to assure that the data have been collected
reliably by the system itself. As system databases are maintained for the operation
of the system rather than for scientific purposes, decisions about data collection are
usually made for operational reasons rather than to preserve the scientific integrity
of the data (e.g. system databases might be periodically purged of old data for
performance reasons). However, those decisions and their consequences are unlikely
to be visible to an external researcher. In political science, similar concerns are
raised about biases in news sources’ selection of events to report and, indeed,
whether certain relevant events are reported at all (McClelland 1983). Boyd and
Crawford (2012) note that most Twitter APIs yield a subset of tweets, but it is
not clear how that subset is selected, making the generalizability of the sample
questionable.
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Data Processing from Level 0 to 1

To move from Level 0 to Level 1, data are annotated with additional information
about the observations that were made. The issues here for trace data parallel those
for collecting Level 0 data, namely, ensuring the completeness and reliability of
the data collected. As an example, email messages include a timestamp (a kind
of metadata for the email observation), but may omit the time zone, making the
interpretation of the timing of messages problematic (Howison et al. 2011).

Data Processing from Level 1 to 2

For Earth observation satellite data, data at Level 2 are the results of interpreting
satellite sensor data as geophysical variables. Such an interpretation is inherently
theoretically based. For example, to interpret light reflected from the Earth as
evidence of vegetation requires a good model (possibly empirical rather than
strictly theoretical) of how different kinds of vegetation reflect light under varying
conditions.

In the world of trace data, traces need to be interpreted to serve as evidence for
social and behavioural concepts of interest. For example, political science events
databases arise from human or machine coding of events reported in news stories. As
Veen (2008) notes, each “event scheme is informed by theoretical assumptions about
the international system and the interaction of political actors”. However, Venn notes
that researchers often want to analyse variables such as the level of cooperation or
conflict between two countries, which requires further interpreting the events as
evidence for these constructs.

Returning to social media data, to create Level 2 Twitter data, raw tweets can
be content analysed for any number of social and behavioural science concepts,
e.g. for what topic a tweet addresses or what speech act the tweet represents
(Hemphill and Roback 2014). Again, such interpretation relies on a theory about the
concept in question and how it affects or is reflected in the observed behaviour. As
Manovich (2012) notes, online behaviour is “not a transparent window into peoples’
imaginations, intentions, motifs, opinions, and ideas” and thus needs to be carefully
and thoughtfully interpreted.

In some cases, interpretation is sufficiently well understood and mechanical that
it can be done automatically. For example, natural language processing techniques
have been developed to determine the sentiment of a text, albeit with some
imprecision. Recent political science events databases are generated by automatic
coding of wire service articles (Veen 2008). In other cases, human judgement
might be needed, which can pose a significant bottleneck for processing as well
as potentially adding individual human errors or biases to the judgements. These
issues have led to the development of citizen science projects that have multiple
human volunteers assess images or other data. In many cases though, this processing
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is more akin to processing Level 1B in the original Earth observation framework.
For example, annotating an image of a galaxy for its shape (as in the original Galaxy
Zoo) or an image of an animal with the species (as in Snapshot Serengeti) provides
useful information, but the data are still about the image with limited theoretical
import. (This argument might also be made about political science events.)

Unfortunately, in many cases, analyses of trace data essentially skip this process-
ing step: data instead remain at the level of the original phenomenon. For example,
a social network can be constructed from email messages by interpreting replies to
a message as creating links. While this process does yield a network, the theoretical
import of such a network is unclear. At best, a reply suggests that the person replying
read and was interested in the message, but many others likely also read the message
without feeling a need to reply. Similarly, data from digital badges can identify
how people move through space or who they have been close to, but without some
theory about movement or propinquity, it is hard to interpret the data as evidence for
research. Even when an interpretation is made, it may not be theoretically justified.
In a study of published communications and social computing studies of hyperlinks,
Twitter followers and retweets (three kinds of trace data), Freelon (2014) found that
“substantial proportions of articles from both disciplines failed to justify the social
implications they imputed to trace data”, “more extensively in the latter” discipline
(social computing).

Data Processing from Level 2 to 3

Level 3 data require aggregating data from Level 2. To aggregate the data requires
picking a unit of analysis and linking related observations. An obvious unit for
aggregation for trace data of behaviours is the person involved in the recorded
activity. For example, political science events are coded for the actor and recipient of
an event to permit such aggregation. For social media data, one might link submitted
tweets by the user ID. However, just as an event may not have an identified actor
(e.g. an anonymous terrorist attack), in some settings users may have an option
to work anonymously (Panciera et al. 2010), which means that a user ID might
not capture all work done by a person. In particular, it may omit work done while
lurking in the early stages of involvement with a group (e.g. reading others’ posts),
creating problems for studies of new members in particular. Data might also be
aggregated to a population, e.g. to determine the average properties of particularly
kinds of contributors. Interpreting such aggregated data requires more attention to
the nature of the sample. As a specific example, Boyd and Crawford (2012) note
that “it is an error to assume ‘people’ and ‘Twitter users’ are synonymous: they are
a very particular sub-set”.
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Data Processing from Level 3 to 4

Level 4 data are derived from the composition of different datasets. Unfortunately,
such composition is difficult for trace data and for social and behavioural science
data more generally. The problem is that to connect datasets, there needs to be a way
to link the data. In database terms, there needs to be common field on which to join
the data tables. More simply, the different data need to be about the same thing.

For geospatial data from a satellite, data are typically tied to a particular spot on
the Earth. There are difficulties in working out which spot a sensor has measured and
aligning data collected in different patterns or at different resolutions, but once these
issues are addressed, then collected data can be connected to other data about that
spot, no matter how it was collected. The same principle also applies in astronomy:
data about the same spot in the sky can be connected.

Alternately, data may be about a specific entity with a stable identity, allowing
linking. For example, astronomical data can be thought of as being about particular
celestial objects (stars or galaxies) that can be linked from dataset to dataset. Finally,
data may be about an identifiable class of object. For example, ecological data might
be about particular species and so of interest to others who study the same or similar
species. Astronomical data can be about a particular type of star.

In the social sciences, datasets may sometimes be about identifiable entities,
allowing linking of datasets. In particular, economic data are often about countries
or companies, which makes it possible to link data about the same countries or
companies (though even here there can be issues in making connections). This
situation may also describe data collected about entire online communities: different
perspectives on the various language Wikipedia projects can be compared.

For behavioural research though, data are likely to be about people. As with
aggregating data to Level 3, it is possible to link data from a system for a particular
user by using the user’s system ID. However, such an ID likely has little meaning
beyond the system. We might therefore be able to link a user across multiple Twitter
databases, but not Twitter and anything else, meaning that we might not know
anything more about users of a social media site than what they post. For the specific
case of free/libre open source software developers, Crowston et al. (2006) argued
that developers are often attached to the user IDs and so attempt to use them on
different sites, but it is not clear that this phenomenon generalizes. Without knowing
the identity of the specific respondents, it is not possible to link individual responses
to other data. At most, data can be cumulated with other data to increase the sample
size, as in a meta-analysis, deepening the analysis but not broadening it.

Conclusion: Recommendations for Future Research

The framework presented here reinforces several recommendations that have
already been made about social and behavioural research. First, there are clear
implications for reporting research. Specifically, research using trace or social media
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data needs to provide more detail on the processing that took data from level to
level. It would also be valuable to share techniques for moving between levels to
promote reproducibility of research and to allow researchers to leverage each other’s
findings.

There are further implications for sharing data. Researchers sometimes face
limitations on sharing Level 0 or Level 1 data. For example, the terms of service of
some social media sites limit sharing such raw data. Data from proprietary services
may simply be unavailable outside the organizations that run them (Lazer et al.
2009). It is worth noting that there are serious problems for the reproducibility
of science if the datasets underlying studies can’t be shared, meaning that other
researchers are unable to check or reproduce findings. On the other hand, Level 2 or
3 data may not be so encumbered, and these are the levels that are likely to be of the
most interest to other researchers. Coupled with a sufficiently detailed description of
the data processing used to create the data, a Level 2 or 3 dataset may be sufficient,
at least for checking results.

However, the discussion of creating Level 4 data suggests that even Level 2 or
3 data may be difficult for others to link to their own data. To be useful, the data
set needs some ID on which to link the data. But if researchers know the identity
of users, it is likely that they will not be able tell anyone else in order to maintain
the privacy of participants (Daries et al. 2014), i.e., the ID will not be available. A
possible direction for research is to apply the notion of a species as an entity for data
collection. If researchers using trace data could agree on clearly defined classes of
users of interest, then data might be shareable and reusable when aggregated at that
level.

In summary, it is unarguable that the increased penetration of information
technology across the spectrum of life activities is creating a vast trove of trace
data and that such data can be of great interest to social and behavioural scientists.
However, such trace data are different in kind from data more traditionally used
in social and behavioural research. Applying a framework from Earth observation
studies, we have shown how raw trace data must be processed to create data useful
for advancing social and behavioural studies and identified the issues that arise. A
particularly problematic issue is identifying what data are about in order to be able
to link across datasets.
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Chapter 5
The Ten Adoption Drivers of Open Source
Software That Enables e-Research in Data
Factories for Open Innovations

Kerk F. Kee

Introduction

According to the Oxford dictionary online, a factory is “[a] building or group
of buildings where goods are manufactured or assembled chiefly by machine.”
To use the word “factory” in conjunction with “data,” one can interpret the idea
of “data factory” as a virtual arrangement or group of arrangements where big
data sets are produced, aggregated, recombined, and/or repurposed mainly by
cyberinfrastructure. The meta-platform of cyberinfrastructure includes open source
software, visualization systems, remote instruments, distributed sensors, high-speed
networks, supercomputers, communication technologies, and the multidisciplinary
experts involved in the aggregation of big data and the production of knowledge
based on the data (Atkin et al. 2003; Kee et al. 2011). Towns et al. (2014) refer to
these also as advanced digital services for research and education with big data.

In the metaphor of a factory, an important point is that raw materials get turned
into useful products through material manipulations and industrial treatments.
Similarly, in a data factory, raw digital data get turned into meaningful insights
through computational processing and data analysis. A critical component in data
factory is the software that preprocesses and analyzes raw digital data. In fact, many
results from the analysis of big data depend on and/or are tied to specific software
applications. Therefore, insights drawn from big data are software dependent;
without good and appropriate software, the hidden insights in big data cannot be
fully tapped.
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Additionally, the metaphor of a factory also conjures up the notion of “stan-
dardization,” a practice made commonplace during the industrial revolution with
the introduction of Taylor’s scientific management and time and motion studies
(Miller 2008). Standardization is important to the idea of data factories, as the stan-
dardization of data format and the interoperability of data make data aggregation,
recombination, and repurposing for even larger-scale analysis possible. Therefore,
a piece of good software should be designed to be easily adopted and widely
diffused in order to facilitate the standardization and interoperability of data for
data factories.

While much attention has been given to big data as the raw materials that have
hidden insights, limited attention has been given to the open source software that
turn raw materials into powerful insights. However, without successful design,
development, adoption, and implementation of useful software, raw materials will
remain raw materials with hidden insights. Metaphorically, a factory full of raw
materials without machines to process them is just that – a factory full of raw
materials. A factory full of raw materials processed and assembled in a meaningful
way can turn the rawness into usefulness. Therefore, intentional and strategic efforts
should be carried out to promote wider adoption of good software applications.

The purpose of this chapter is to explore what drives the adoption and diffusion of
open source software that can usher in the vision of data factories. With the adoption
of good software applications across the community, researchers can begin moving
individual data sets developed by independent projects across geographic locations
and disciplinary domains into a broader data ecosystem sustainable over the long
term. The data ecosystem should also be easily accessible and used by present and
future researchers not directly involved with data collection and documentation of
the individual data sets.

In order to achieve the stated goal for this chapter, it is organized with the follow-
ing sections. First, the concepts of data, big data, and e-research are defined. Second,
the largest National Science Foundation’s (NSF) supercomputing consortium,
XSEDE (Extreme Science and Engineering Discovery Environment), is discussed
as a specific case of a data factory. Third, based on interviews conducted with
community stakeholders of XSEDE, ten drivers of open source software adoption
are discussed along with associated critical questions to promote intentional design
of software for successful diffusion in the larger research community. Finally, a
conclusion with implications wraps up the chapter.

Data, Big Data, and e-Research

Schroeder (2014) defines data as the materials that belong to the object(s) or
phenomenon(a) of investigation and that data are the most useful unit of analysis for
the investigation, which involves data collection before the interpretation. To take
it further, Meyer and Schroeder (2015) argue that when a data set is a magnitude
larger than any other existing data sets in size and scope within a given domain, the
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data set is qualified as big data. Furthermore, they suggest that big data represents
a new form of collaborative interaction with and around materials for research. The
idea is that big data do not exist simply as materials; they require multidisciplinary
experts to collaborate in order to harness big data for important insights.

Besides the scholarly definition of big data offered by Schroeder and Meyer, big
data is more commonly defined in the industries by several keywords that begin
with the letter V. More specifically, the concept of big data was defined by what
was first known as the three Vs of big data: volume, variety, and velocity (Laney
2001). The first V of volume refers to the size of the data, and it is often measured
in terabyte and petabytes. This characteristic is almost intuitive, as the volume is
what makes a data set big or bigger than other existing data sets in a given domain.
The second V of variety indicates that big data have a range of data formats, often
referred to as structured and/or unstructured data. If a big data set is made up of
simply structured data, its aggregation, recombination, and analysis are relatively
straightforward. If a big data set consists of mainly unstructured data, computational
analysis will require a lot of data cleaning and conversion, in order to create format
consistency (which is also known as the interoperability of data). This is critical
for the need of recombining and repurposing of previously isolated data sets from
independent projects. The third V of big data is velocity, which refers to the speed at
which data are produced and processed. The production and processing of big data
are usually in real time or near real time. It is also this characteristic that gives big
data the currency and dynamic advantage over traditional dated and static data.

Recently, Gandomi and Haider (2015) further argue that big data possess three
additional Vs of variability, veracity, and value. Variability describes the flow rates
of big data as fluctuating, unpredictable, and erratic. The fluctuation of big data’s
flow rates is due to the fact that big data sets usually are the aggregated results
of data coming from various sources. Therefore, big data usually show periodic and
sporadic ups and downs in flow rates. The next V of veracity implies that despite big
data’s inexactitude, imprecision, and uncertainty, they hold significant and hidden
insights. The insights require strategic harnessing by humans and machines. Finally,
the last V of value signifies that there is important worth that can be drawn from
big data’s large volume. As previously mentioned, the large volume of big data is
the obvious defining characteristic of big data. Although the large volume of big
data, often measured in terabytes and petabytes today, is commonly used as the
primary definition of big data, Gandomi and Haider argue that the notion of volume
is relative – what is regarded as big at the present time may be small in the future.

Given Gandomi and Haider’s point above, perhaps the definition offered by
Mayer-Schönberger and Cukier (2013) can be added to the list of defining charac-
teristics. They argue that a data set is considered big data when the size of a sample
drawn from a population is equal to the size of the entire population (i.e., N D

all). Their argument stems from big data analytics’ departure from the traditional
practice of sampling and inferential statistics when it was impossible to obtain
and/or analyze population data of an entire organization, community, country, or
social system. Due to previous limitations in terms of data collection, researchers
carefully drew a sample for analysis and then appropriately inferred from the sample



54 K.F. Kee

certain insights about the population. This inference was determined by statistical
calculations and probability. However, since population data can be obtained today,
sometimes through passive data recording, there is no longer a need to simply draw
a sample. Moreover, data analysis was previously limited to what a single computer
can process. Given today’s network capability, big data set can be processed by
a network of supercomputers, such as in the case of the Extreme Science and
Engineering Discovery Environment (XSEDE).

In summary, big data can be defined by volume, variety, velocity, variability,
veracity, and value. These six Vs have also been reduced to simply the five Vs
(volume, velocity, variety, value, and veracity) of big data. Today, the five Vs are
widely used to define big data, such as in the call for papers by the 2016 IEEE
Big Data conference in Washington DC. The main characteristic of volume can be
understood also as when the size of the sample is equal to the size of the population
or when the volume is at least one magnitude bigger than the size and scope of
other existing data sets within a given domain. Finally, big data present the need for
multidisciplinary collaborations with and around the data.

What is the purpose of big data then? Meyer and Schroeder (2015) offer
the answer that big data are being used for e-research (Borgman 2010; Dutton
and Jeffreys 2010). They define e-research as “the use of shared and distributed
digital software and data for the collaborative production of knowledge.” They
use the term e-research to be inclusive of e-science, computational social science,
digital humanities, and any other computational analyses of big data for advancing
knowledge by collaborative researchers. Interestingly, their definition of e-research
has an emphasis on the collaborative nature of knowledge production. In other
words, if a researcher simply digitalizes the data (e.g., scanning images of historical
manuscripts for computational analysis) for personal use, and the researcher does
not share the digitized manuscripts with a wider community of researchers, this
researcher’s work does not fully qualify as e-research. The emphasis of the
collaborative nature of e-research is critical for the notion of data factories, as these
factories are set up to support open innovations.

The challenge of volume can be addressed by high-performance computing
(HPC) and/or high-throughput computing (HTC). When a data set is too big and
a single desktop computer cannot process the data (i.e., choked and frozen when the
“process” button is pushed), a researcher can apply for an allocation to access HPC
and/or HTC at national resources, such as XSEDE. Therefore, the major challenge
addressed by the data factory metaphor is that of variety. Metaphorically, a producer
of goods made the goods from start to finish before the industrial revolution.
Because the process was done by a holistic approach, each product was unique.
While the uniqueness may be celebrated by some, the variety can be a problem
when there is a need to aggregate, recombine, and repurpose them.

Taking a pro-innovation and innovation diffusion stance, this chapter presents
the purpose of data factories as threefold. First, it is about standardization and
interoperability to reduce the challenges that come with big data’s variety and vari-
ability. Second, it is about having centralized data repositories and computational
resources to process big data, supporting big data’s volume and velocity. Finally, it is
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about creating and maintaining a thriving and collaborative community around open
innovations, so big data’s veracity and value can be fully realized. Given the purpose
discussed, the next section presents XSEDE as a specific case of data factory.

XSEDE as a Data Factory

The Extreme Science and Engineering Discovery Environment (XSEDE,
www.xsede.org) is the largest supercomputing consortium that provides
computational resources and expertise for data-intensive research and education
in science, engineering, social sciences, and humanities in the USA. XSEDE
consists of more than 20 supercomputers and resources for advanced visualization
and analysis of big data. The consortium is led by the National Center for
Supercomputing Applications at the University of Illinois at Urbana-Champaign,
and it includes partner centers such as the Texas Advanced Computing Center at
the University of Texas at Austin, the San Diego Supercomputer Center at the
University of California at San Diego, and universities such as Purdue University
and University of Southern California, to name a few (for a full list, please visit
https://www.xsede.org/leaders). These partner institutions each contribute one or
more allocatable services to the consortium.

XSEDE is funded by the Office of Advanced Cyberinfrastructure (OAC) of the
NSF’s Computer and Information Science and Engineering (CISE) Directorate to
continue advancing NSF’s efforts in providing a national infrastructure to support
the e-research community and cyberinfrastructure ecosystem started by the TeraGrid
(2001–2006) and TeraGrid2 (2006–2011) projects (for information on TeraGrid
and TeraGrid2, please see Lawrence and Zimmerman 2007, Towns 2011, and
Zimmerman and Finholt 2006). Launched in July 2011 and funded at about $125
million for 5 years, XSEDE transitioned into XSEDE2 in September 2016 for
another 5 years with a new round of funding at about $92 million. Similar to
TeraGrid and TeraGrid2, XSEDE provides all the resources and support at no cost
to the e-research community. XSEDE2 will continue in this approach to support big
data and open innovations in the USA.

The goal of XSEDE is not simply to provide supercomputing power; the
goal also includes the goal to provide a comprehensive and cohesive set of
distributed infrastructure, digital services, support services, and technical expertise
to enable e-research and cyberlearning (Towns et al. 2014). Broadly, XSEDE has
supported researchers in computational finance, genomics, epidemiology, digital
humanities, and social network analysis. Notable examples of groundbreaking
research supported by XSEDE include a study of high-frequency trading in the
US stock market (see O’Hara et al. 2014) and the hydrogen sorption in a metal
organic framework (see Pham et al. 2013), to name a couple. More importantly,
based on theoretical assumptions from classical and quantum mechanics, the use of
XSEDE’s predecessor was utilized for performing the simulation and prediction of
the behavior of biomolecules, a study that led to a discovery that awarded Martin

http://www.xsede.org
https://www.xsede.org/leaders
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Karplus, Michael Levitt, and Arieh Warshel the 2013 Nobel Prize in Chemistry.
Their computational simulation was innovative in taking chemistry research outside
of the traditional laboratory (Towns et al. 2014).

XSEDE stores tens to hundreds of petabytes of data, supports a few hundreds
of software packages, as well as provides training and services to more than
10,000 researchers and 2500 projects across all 50 states to harness big data for
research discovery and knowledge production. XSEDE also supports international
researchers from over 100 universities in more than 35 countries who collaborate
with the US researchers XSEDE directly supports. XSEDE is an exemplar of a data
factory, as Towns et al. (2014) explain – the purpose of XSEDE is for:

Making codes run faster and more easily allows researchers to get more science done in a
fixed amount of time. Lowering the barrier for access to and use of digital services enables
additional research in established communities and in new communities who haven’t
harnessed these services to date. Such productivity increases can be the difference between
an infeasible project and a feasible one, reducing the time to publishing scientific findings.

The notions of efficiency and productivity, two characteristics of the machine
metaphor of industrial revolution (Miller 2008), are prominent in XSEDE.

As previously stated, the idea of “data factory” can be interpreted as a virtual
arrangement or group of arrangements where big data sets are produced and
aggregated mainly by cyberinfrastructure. A key feature of cyberinfrastructure is the
open source software applications necessary for processing big data. Understanding
the adoption drivers that promote diffusion of these software applications is
important because existing efforts should not be wasted and new users do not need
to reinvent the wheel. Furthermore, wider diffusion of good software will also help
create standardization and interoperability of data, further promoting the vision of
data factories. Standardization can reduce idiosyncratic measures, and data formats,
instead, move data from isolated projects and locked box repositories more easily
into a longitudinal data warehouse associated with certain data factories. Finally,
with wider adoption, more data can be aggregated, recombined, and integrated to
perform analysis at unprecedented scale, to tackle big problems previously limited
by the volume and variety of data and the limitation of existing software and
supercomputing resources. The ultimate outcome of a pro-innovation diffusion
effort in this sense can lead to more innovations and breakthroughs that benefit
societies and humanity worldwide. In order to promote diffusion, the next section
explores the ten drivers that promote the adoption of open source software for data
factories and open innovations within the XSEDE community.

The Ten Adoption Drivers of Open Source Software in XSEDE

The ten drivers discussed in this section were identified in an analysis based on 135
in-depth interviews with domain researchers (as technology users), computational
technologists (as software developers), and center administrators (as data center
leaders) who consider themselves stakeholders of the XSEDE community (for more
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details, see Kee et al. 2016). The interviews were systematically analyzed using
the grounded theory approach (Glaser and Strauss 1967; Kee and Thompson-Hayes
2012; Strauss and Corbin 1998). The ten drivers are also discussed with critical
questions from the perspective of potential new users. These questions represent the
kind of issues that stakeholders should keep in mind while designing and promoting
their software within the larger research community to support data factories and
open innovations.

Driven by Needs

The first adoption driver is the software’s ability to meet users’ existing needs.
While research to date is still inconclusive about if users’ needs drive innovation
(see von Hippel 2005 on how lead users created innovations to meet their own
needs) or an innovation creates a market for an unknown need (see Daly 2011
on how iPod created a completely new market), the development and adoption of
open source software for big data are usually driven by known needs in the research
community. This is because big data usually exist before the software to process
them is available, and the software is designed to harness existing data. The segment
that makes up the potential user market are busy professionals who do not have time
to adopt a piece of software simply for personal enjoyment, but for a compelling
reason, such as a pressing problem that represents a dire need for a solution.

Furthermore, the design and development of open source software can be very
time consuming and financially expensive. This is why many software applications
are developed by federally funded projects for 3–5 years (Kee and Browning 2010),
such as those supported by NSF’s OAC. In these projects, if the inception teams
are not able to articulate a compelling rationale with clear reasons for the need to
develop a piece of software for research, the projects would not be funded by NSF
and other federal agencies (such as the Department of Energy, National Institutes
of Health, National Oceanic and Atmospheric Administration). The rationales
are often based on grand challenges and critical problems well-documented in
the research literature. Therefore, in order for a piece of open source software
to widely diffuse, it needs to clearly meet the needs of potential users and the
community/funders behind their work. In fact, in their discussion of XSEDE, Towns
et al. (2014) open the article by stating that the establishment of XSEDE itself was
“[d]riven by community needs.” Therefore, a critical question stakeholders should
keep in mind that a potential user may ask is “Does this software meet my needs?”

Organized Access

Once there is a compelling need, potential users require organized access to find
the open source software they may adopt. The notion of organized access is not



58 K.F. Kee

simply having an online link to download a piece of software; the notion includes
having a systematically designed location (usually a website, such as HUBzero
at https://hubzero.org/ and Galaxy Tool Shed at https://toolshed.g2.bx.psu.edu/)
where inception teams post their software, active users rate, review, and comment
on the software and potential adopters read about the software online easily. The
website should be designed to facilitate a vibrant community where the interactions
among different groups of stakeholders (inception teams, active users, and potential
adopters) come together to carry a piece of open source software forward.

Having organized access to an online marketplace where the marketplace is well
known is important for diffusion. This driver is important for data factories as the
community of users need to participate in the marketplace in order to generate open
innovations collectively. A piece of diffusing software has to have a strong web
presence, and it can be located at a known marketplace that is open and organized
for a community of users. Therefore, the critical questions stakeholders should keep
in mind that a potential user may ask are “Is the software easily available?” and
“Can I find the software at a known location?”

Trialability

The third adoption driver of a piece of diffusible open source software is that it
allows potential adopter to try it out before full adoption. Many open source software
applications in e-research to date have a high degree of trialability because they
are open sourced. These software applications are different from their propriety
counterparts in that all the source codes are freely open, so interested developers
and savvy users can add to the software and extend the software features based on
their existing needs. In other words, being open sourced allows for open innovations
and ecologically driven evolution of software. This is an important point for
trialability because it is often during the open trials that potential adopters cultivate
an understanding of the software and how it works, what it means for them in their
particular contexts.

The notion of trialability is important for data factories because the notion of
open innovation is eventually driven by open free trials and organic contributions.
Within the community of e-research and open innovations, members subscribe to
the open sharing philosophy. Once a piece of software is aligned with the potential
users’ philosophical orientation, the software should also be easily implemented
for a trial without too much learning time. A steep learning curve will discourage
adoption. Therefore, the critical question stakeholders should keep in mind that a
potential user may ask is “Can I try this software without much time investment?”

https://hubzero.org/
https://toolshed.g2.bx.psu.edu/
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Well-Documented

Documentation refers to having a complete record of how the software was
developed, instructions on integrating and using the software, the decisions that
went into the design, the updates, and exemplars of how the software has been
successfully used to solve different big data problems. A piece of software that
is well documented not only offers potential adopters simply basic information
to download the software, it offers a learning environment that is akin to a fully
developed course on a piece of software. In other words, the documentation cannot
be outdated and/or skeletal. Otherwise, another software with better documentation
will likely attract more active users and potential adopters.

Being well documented is also an important characteristic for data factories,
because the community members for open innovations are diverse, and the vision is
to maintain long-term data and technologies that allow longitudinal analyses. Even
when the pioneering stakeholders are no longer alive 100 years from now, their well-
documented software applications can continue being updated and used by future
researchers. Therefore, the critical question stakeholders should keep in mind that
a potential user may ask is “Is the software well documented with a complete track
record and robust user guides?”

Community Driven

Building on the adoption drivers of trialability and being well documented as
discussed above, the more people can try out a piece of software with helpful
documentations, the more active a community will develop around the software.
The open sourced nature continues to manifest in the adoption driver of being
community driven. The open source philosophy does not only give innovations
freely to a marketplace, it empowers a community of stakeholders to rally around the
software. The source codes are open online; this allows many savvy users, potential
adopters, and interested developers to participate in trying out the software, integrat-
ing the software, fixing the bugs, updating the codes, improving its functionality, and
extending its usage to new problems and contexts previously not considered by the
inception team.

Shirky (2009) beautifully elaborates on Eric Raymond’s notion of “a plausible
promise” – the promise that the original developer will not take advantage of
community contribution for personal financial gain. A plausible promise is what
gives community members the reason to join and contribute to the community. The



60 K.F. Kee

driver of community driven is fundamental to data factories for open innovations.
It is also this driver that gives future adopters the confidence that the software will
continue to thrive with the support of the community. Therefore, the critical question
stakeholders should keep in mind that a potential user may ask is “Is there a thriving
community that will carry this piece of software forward for the long term?”

Observability

The next adoption driver is observability. The notion of observability manifests
in terms of how often near peers talk about a piece of software (i.e., word of
mouth), how frequently the software is showcased in research presentations and/or
demonstrations at a conference (i.e., community visibility), and its success in
enabling good research and producing useful results (i.e., citation index). The notion
of observability based on the three dimensions of word of mouth, community
visibility, and citation index allows a piece of software to create the impression
that the software has a strong potential to be useful for potential adopters.

The driver of observability is also important for data factories and open inno-
vations because the contribution to and access to repositories depends on whether
community members are aware of the software and related data archives. The more
observable the software is, the more likely it will attract a group of stakeholders
around it. Therefore, the critical question stakeholders should keep in mind that a
potential user may ask is “What software are my peers using, and how are they using
it?”

Relative Advantage

The adoption driver of relative advantage refers to a piece of software’s ability to
outperform an existing software in multifold. It is important to note that potential
adopters are often entrenched in their existing technologies. Therefore, it is difficult
or painful for them to transition. The new open source software has to offer a
multifold advantage for potential adopters to overcome their resistance to avoid pain
during a software transition.

In the case of open source software, a large segment of potential adopters
are not existing users of other open source software, but potential adopters of
the computational approach to gain insights from big data. In other words, these
individuals have to be convinced not simply that the software is going to help them
do their work better, but that the computational approach and big data will help
them solve problems that are bigger in scale and more complex in scope or to
solve a problem that otherwise cannot be solved with their existing technologies
and approaches based on sampling techniques and samples drawn from larger
populations of interest.
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The driver of relative advantage is also important for data factories because the
idea of open sharing an open innovation is still relatively new for the traditional
research community grounded in individual credits for hiring, tenure, and promo-
tion. The bundle of software, big data, and computational approach need to appear a
lot more beneficial than the traditional way of doing research. Therefore, the critical
question stakeholders should keep in mind that a potential user may ask is “Is this
software a lot better than what I have right now?”

Simplicity

Simplicity is key to successful software adoption. Very few people will take the
time and effort to adopt a piece of complex software that is difficult to learn. There
are always some die-heart users who believe that to fully do computational data
processing, one needs to know the nitty gritty of programming and supercomputers.
However, these individuals make up a small segment of the market place, possibly
only those who are referred to as “innovators” (2.5% of total population) in Rogers’
(2003) original diffusion model.

Instead of the need to learn how to program like those previously referred to as
active and savvy users, there is now a steady effort in creating science gateways
to lower the barrier of entry (Wilkins-Diehr et al. 2008). Science gateways are
essentially open source software designed with a user-friendly interface. According
to the XSEDE website:

A Science Gateway is a community-developed set of software, applications, and data that
are integrated via a portal or a suite of applications, usually in a graphical user interface,
that is further customized to meet the needs of a specific community. Gateways enable
entire communities of users associated with a common discipline to use national resources
through a common interface that is configured for optimal use. Researchers can focus on
their scientific goals and less on assembling the cyberinfrastructure they require. Gateways
can also foster collaborations and the exchange of ideas among researchers.

As described above, with a science gateway, users can simply use the point-and-
click method to navigate and use the software to process big data. According to
Towns et al. (2014), more than 40% of XSEDE users in 2013 were users of one
of more than 35 science gateways associated with XSEDE in the same year. This
portion of users is expected to continue growing over time. Therefore, the critical
question stakeholders should keep in mind that a potential user may ask is “Is this
software simple to learn and easy to use?”

Compatibility

The adoption driver of compatibility refers to a piece of software’s fit with a
potential adopter’s technological repertoire, behavioral practices, and ideological



62 K.F. Kee

orientation toward data-driven research. If the innovation is disruptive (technolog-
ically, behaviorally, and ideologically), both for the potential adopters and/or their
collaborators, the innovation will suffer greatly in terms of compatibility. As today’s
researchers are heavily dependent on their technologies, the further a new piece of
software departs from their existing routine and/or the norms in their disciplines, the
more difficult it is for the software to be adopted.

This driver is also important for data factories because in order for a community
of open innovations to thrive, it needs to attract many members. A potential member
may compare and contrast if his/her data format is compatible with the format
chosen by a data factory of interests. Without data interoperability, the aggregation
of data sets into a big data set is difficult. The software and the data format go hand
in hand for the adoption decision by potential users. Therefore, the critical question
stakeholders should keep in mind that a potential user may ask is “Can I easily
integrate this software into my existing routine and collaborations?”

Adaptability

Traditionally, adoption with a deviation from the original purpose of a piece of
software is considered as “noise” in diffusion research. This bias is understandable
because a deviation does not count as a full adoption if a researcher or manufacturer
is interested in tracking “successful adoption” of a new technology as originally
designed. However, in the Web 2.0 era, a deviation from the original purpose (such
as in terms of adaptability, repurposing, and reinvention) may aid in a piece of open
source software’s ability to diffuse. In other words, a piece of software’s ability to
adapt and be repurposed for a new problem and/or a new context may promote its
wider adoption ultimately.

The adoption driver of adaptability should not be left as simply a happy accident.
In fact, it can be an intentional diffusion strategy – a piece of software is designed
to repurpose across problems, contexts, fields, and domains. Therefore, the critical
question stakeholders should keep in mind that a potential user may ask is “Can I
take this piece of software from that domain and bring it into my domain?” Table
5.1 below summarizes the ten adoption drivers and associated critical questions as
discussed above.

Conclusion, Discussion, and Implications

This chapter set out to explore the definitions of data, big data, and e-research in
the context of data factories for open innovations. The metaphor of a factory for
data is compelling as it implies key characteristics for data such as standardization
and interoperability and for open innovations such as efficiency and productivity.
The chapter presents the case of XSEDE as an exemplar of a data factory in the
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Table 5.1 The ten adoption drivers of open source software in the e-research community for data
factories and open innovations

Adoption drivers Critical questions

Driven by needs “Does this software meet my needs?”

Organized access “Is this software easily available?” and “Can I find the software at a
known location?”

Trialability “Can I try this software without much time investment?”

Well documented “Is the software well documented with a complete track record and
robust user guides?”

Community driven “Is there a thriving community that will carry this piece of software
forward for the long term?”

Observability “What software are my peers using, and how are they using it?”

Relative advantage “Is this software a lot better than what I have right now?”

Simplicity “Is this software simple to learn and easy to use?”

Compatibility “Can I easily integrate this software into my existing routine and
collaborations?””

Adaptability “Can I take this piece of software from that domain and bring it into my
domain?”

USA. Most importantly, this chapter laid out ten drivers that promote the adoption
and diffusion of open source software in the e-research community to usher in
the vision of data factories and open innovations. It is important to note that the
ten drivers make up a need-based diffusion model, a broader technology adoption
framework. Although the ten drivers were presented in a linear and sequential way,
it is important to keep in mind that they are interconnected and they influence each
other in a complex way at any given time.

The topic of software adoption is not simply a theoretical question; it is also
an important practical question. Instead of providing direct recommendations for
practice, the ten drivers were presented with associated critical questions (see Table
5.1 for a summary) to prompt the stakeholders to ponder upon and discussed the ten
different drivers at any given point in time. In a fast-changing world of technologies,
a specific recommendation is likely to be outdated in the foreseeable future.
Furthermore, a recommendation that works well in one particular disciplinary
domain may not work in another domain. However, by engaging with the critical
questions, stakeholders can come up with the best answers for themselves in their
given contextual and historical contexts. Therefore, the critical questions are useful
for facilitating stakeholders’ regular reflections on the challenges and opportunities
to promote their software applications for data factories and open innovations.

While the focal point was on the adoption of open source software as a technol-
ogy, an important insight stemmed from the discussion above is that the adoption
decisions are multidimensional. Kee (2017) uses the adoption of green technologies
within the workplace as an example to make this point. More specifically, the
adoption of the green technologies also involves the adoption of the recycling and/or
conservation behaviors and the belief and mindset that environmental sustainability
is of critical urgency and importance within the workplace. If the push to adopt a
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green technology only focuses on the technology itself, the stakeholders are missing
the critical fact that the adoption of the technology is not complete without the
adoption of the associated behavioral practices and philosophical ideologies.

Similarly, the argument can be extended to the adoption of open source software
for data factories and open innovations. The potential adopters need to be willing
to modify existing practices to make the software fit into existing routines and
collaborations. The potential adopters also need to strongly believe that open
source software, data factories, and open innovations are the ways of the future of
research and knowledge production. The adoption decision is multidimensional, as
it involves the adoption of the material objects (i.e., open source software, big data),
the behavioral practices (i.e., large-scale scientific collaborations, open sharing of
data and documentation), and philosophical ideologies (i.e., data factories, open
innovations). The adoption of one dimension without the others would be considered
incomplete. The case of XSEDE presents an interesting context to study the
diffusion of multidimensional innovations for adoption.
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Chapter 6
Aligning Online Social Collaboration Data
Around Social Order: Theoretical
Considerations and Measures

Sorin Adam Matei and Brian C. Britt

Introduction

The development of online collaboratories, which enable users to engage in the
production and creation of content, has proliferated to such an extent that it has
become routine (Wang et al. 2007). Rather than being monopolized by a few
individuals and institutions and tethered to a specific place and time as their site for
work, as it was in the past, collaborative content produced on the Internet is created
and distributed worldwide by millions of individuals, groups, and organizations that
meet online (Harley and Blismas 2010). Nonetheless, while some collaborative
efforts, such as that of Wikipedia, are able to attract and retain contributors,
countless others are unable to fulfill the core requirement for successful, sustained
collaboration (Koschmann 2016; Marshak 2005) and either stagnate or collapse
entirely (Harley and Blismas 2010; Ingram and Hathorn n.d.; Koschmann 2016).

Understanding the evolution and configuration of collaborative online organi-
zations demands a flexible, yet comprehensive framework of investigation, which
sets at its core the issue of social order. This should take into account the fact
that, while user interactions and behaviors are easy to collect, conceptualizing a
model of social order that works well across contexts and interaction environments
is substantially more difficult. Data heterogeneity and model complexity are some
of the recurrent challenges that need to be overcome. Most importantly, when it
comes to interpreting the social and technological patterns identified via automated
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harvesting, interactional complexity is often one or two orders of magnitude greater
than that encountered when examining traditional organizations (Capocci et al.
2005, 2006).

We argue that some of the obstacles to handling collaborative social media
analytic tasks can be mitigated or eliminated by early and rigorous definition of the
research space, which should include reliable and flexible instruments for defining
social order. Preliminary steps should, however, be taken even before engaging these
issues. These should include defining the actors and their behaviors, their domain of
interaction, the quality and quantity of their output, and the manner in which they are
seen as contributors to social order. Furthermore, collaborative data analysis should
propose, from the beginning, a sound theoretical framework for understanding
social interaction and social order as a “social fact” (Greenwood 2003), that is,
as a reality that is greater than the sum of its parts. Social groups should be
seen not as derivatives, but as emergent realities that transcend the members,
even though they may be characterized as “plural subjectivities” (Gilbert 1992) or
“intersubjective realities” (Schutz 1970). Order should be observable as patterns that
exist long after their initiators ceased being active in a group, on a website, or in a
project. Collaboration, likewise, should be viewed not as a simple aggregation of
local, individual rules applied in isolation by otherwise uncoordinated individuals,
but as an emergent order directed by common goals, norms, values, implicit
ideologies, and a need for coordination and control. Such order must be defined
by transindividual rules and behavioral patterns, which emerge from group-defined
and group-enforced norms, values, principles, and goals.

A well-defined set of measures and indicators should complement the theoretical
approach. Regularities and patterns that transcend individuals need to be considered
as observable facts that may be measured with reliable and accurate instruments. Of
these, measures of social structure and social structuration are the most important.
There is no more vital task when observing collaborative spaces than being able
to tell whether they stem from a social structure and an emerging social order.
As such, a substantial portion of this chapter is devoted to directly addressing
the question of structure. Along the way we will suggest ways to translate the
newly rediscovered concept of social order into a cross-group comparison tool
and articulate an argument for platforms that can leverage this concept through
visualization and interaction affordances.

Social Order as (Neg)entropy

Online collaboration occurs in many forms. Researchers have proposed numerous
definitions for what constitutes “online collaboration” (Faraj et al. 2011) and how
such efforts should be undertaken, but no clear consensus exists (Faraj et al. 2011;
Harley and Blismas 2010). More importantly, much research should be conducted
to clearly understand online collaborative processes. For example, despite recurring
claims that online collaboration is innately egalitarian and potentially superior due
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to some form of “collective intelligence” that spontaneously emerges with minimal
coordination (Kelly 1994), there is mounting evidence that online interaction instead
follows traditional patterns of collaboration (Matei and Bruno 2015).

Additionally—and quite interestingly—individual effort, inputs, and outputs
are regularly observed to be unevenly distributed (Huberman 2001). Emergent
coordination and/or power hierarchies accompany these uneven distributions (Shaw
and Hill 2014), and online groups that are rooted in these uneven distributions are
consequently more likely to be productive.

These complex and uneven social arrangements require theoretical models and
derived tools that can explain how social encounters take shape online. They should
emphasize social structural approaches. The models should give an account for the
emergence of social structures, roles and reputations, and the tools derived from
them, in turn, may be used to explain, with maximum efficiency, individual and
group effectiveness. To this end, we propose an approach to measuring and defining
social structure via entropy as a negentropy phenomenon (Stepanić et al. 2005), as
detailed below.

A significant amount of empirical evidence indicates that collaborative effort in
online environments, such as those of Wikipedia, the open source software (OSS)
and Linux movements, and other social interactions such as online bulletin boards
or discussion groups are typically distributed in the shape of a highly skewed curve
(Barabasi and Frangos 2002; Huberman 2001). These findings suggest that online
social environments tend to naturally lead to social aggregates that are dominated
by a few sources, voices, or actors. However, this might or might not lead to
highly hierarchical and strictly compartmentalized groups. Power structures that
are tightly scripted and organized do not perform very well online. They often run
into problems of their own, including inefficient utilization of resources and poor
allocation of effort, and they manifest an inability to fully capture and circulate
local and tacit knowledge throughout the organization. These problems contribute
to increasing transaction costs, which limit the scale of any organization, even if
well structured (Coase 1937).

With this in mind, online social processes need and often find an equilibrium
point between extreme decentralization and total egalitarianism, which instantiates
a certain form of social order. This is, presumably, the point where a sufficient
but not excessive number of roles and methods of work, authority, and reward
allocation have emerged (Blau 1959; Coase 1937). More importantly, this is a point
of social structuration, around which patterns of authority, work investment, and
role allocation take place (Blau 1975). Finding this optimal point on the curve of
social structuration which marks the presence of social order should be a central
concern when trying to understand data collection, interpretation, and cross-project
comparisons for online collaboration (Sydow et al. 2017).

Previous work (Matei and Bruno 2015) has proposed that Shannon’s theory of
communication and its companion measure, social entropy, can be applied as an
index for user participation and collaboration in online and/or technological systems
(Shannon and Weaver 1949). The point at which groups become structured can be
identified by plotting the evolution of a group’s entropy over time.

https://paperpile.com/c/bCykSS/NHID
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Although the complete demonstration of what entropy is and why it can be used
as a proxy for social order is long and cannot be made here (Matei and Britt 2017),
suffice it to say that entropy is a relatively concise and elegant solution for handling
order because it is based in a simple idea. Systems are made of elements, which can
take random or nonrandom (organized) states. Random states, statistically speaking,
imply that no element should be expected to be in a certain state more than what
chance alone predicts. They are, by definition, “egalitarian.” In other words, simpler,
disorganized systems have a maximum level of entropy because their constitutive
elements are equally likely to be in a particular state at a given moment in time.
This also means that the elements are equal in other respects. Taking the example
of a socio-collaborative system, when the participants in such a system have no
clear role delineations and spontaneously contribute an equal amount of work, they
are likely to work in isolation and perform redundant tasks. In contrast, when some
members contribute much more than others, the group is more likely to be organized
because some members lead by example and shape the project, being in more than
one place (collaboratively speaking) at the same time.

Social entropy, in this context, is an indicator of several dimensions of social
collaboration. On the one hand, it measures diversity and evenness of collaboration
in raw terms. It can also be used as a quantitative indicator of how strongly or weakly
skewed the collaborative effort is in terms of inputs to the collaborative process.
Seen through this lens, we consider social entropy as a higher-level indicator of
group structuration. Groups that are dominated by one or more members are also
more likely to have a command, power, and communication structure. In short, we
can use social entropy to measure a group’s level of coalescence. This can be a first
step toward characterizing it as an entity that denotes institutional characteristics.
In previous research, we have shown how this process works on Wikipedia (Matei
and Britt 2017). We have also explicated an evolutionary model inspired by the
community of practice paradigm which shows that entropy measurements can be
used to track and describe organizational behaviors and patterns over time (Matei
and Britt 2017).

At this point, a brief note about using entropy to measure social structuration is
warranted. As a measurement tool, entropy increases as system chaos increases. It
is, in fact, a measure of social organization in the negative. Social order increases (at
least to a point) as entropy decreases. Due to this measurement subtlety, it is useful
to think about social order as a manifestation of what Schrodinger called “negative
entropy,” or in short, negentropy (Schrödinger 1948). This is also similar to the
amount of “free energy,” a concept that has been explored in social sciences as well.
Negentropy, in this context, is a term that covers the same territory as entropy, with
the difference that we consider it as a measure of social structuration. We do not
use (neg)entropy in the more technical sense, as differential entropy, as we instead
measure it in a very traditional and simple manner via the formula H D � ˙plog(p).
To mark this distinction, we will put the negative particle (neg) in parentheses.

This theoretical work, conducted in collaboration with physicists, computer, and
social scientists, has resulted in the Visible Effort wiki visualization tool (http://
veffort.us). The main goal of this site is to make social order visible on every page

http://veffort.us
http://veffort.us
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via (neg)entropy measurements. Social order is represented as unevenness of gross
and net contributions. Visible Effort compares page versions on a word-by-word
basis, and users are credited with any deleted, modified, or inserted words. Once
words are counted and allocated to each user, the entropy value is generated and
stored for each edit and each iteration of editing. (Neg)entropy values reflect how
even or uneven collaboration was, with the recognition that, in this case, evenness
also indicates the degree to which the process of collaboration was structured or
unstructured.

(Neg)entropy values are used dynamically to shape the page layout using easily
comprehensible conventions. Key visual elements of the collaborative space (page),
especially its frame, darken or condense as the level of (neg)entropy increases. This
communicates, at a glance, to the system administrators and to the users how even
(or structured) the collaborative process currently is. When the color is the lightest,
entropy is 0 and (neg)entropy at a maximum. Credit for the collaborative effort
should be assigned to only one member of the team. When the color is the darkest,
there is perfect equality (evenness, high entropy, low (neg)entropy). In addition,
a chart visually reflects the distribution of effort for each collaborator as well as
tabular information such as the number of words or characters contributed by each
individual. In the administrative space of the page, there is also a line chart that
tracks the entropy level of each page as it has evolved over time.

The theoretical and practical approach presented so far has several advantages.
Since it relies on measuring relative proportions of effort, (neg)entropy is easy
to conceptualize in any collaborative system. (Neg)entropy measurements can be
repeated over time, which allows the longitudinal development of social order to be
tracked. Finally, (neg)entropy can be examined in tandem with other measurements
to assess its covariance with, for instance, group effectiveness, content quality,
and the generation of trusted content. In this form, (neg)entropy becomes a very
meaningful measure for calibrating the effect of social order on variables that
measure outcome and effectiveness.

Overall, (neg)entropy represents, again, a simple and clear means to measure
social order that is easily convertible and transferable across social spaces and
collaborative situations. With it, wiki groups or similar online collaboration collec-
tives can be simply and efficiently characterized. (Neg)entropy enables at-a-glance
assessment and measurement of social order, on which we can build other more
meaningful social scientific research questions.

Social Order as Social Embedding: Some Common Measures

(Neg)entropy is a probabilistic measure that synthesizes system states. It works
across and, to a certain extent, smooths out the complexity of social roles, connec-
tions, and interactions. The study of complex collaborative spaces demands specific
tools to examine the extent to which various social influence processes operate in
the collaborative online environment. There are clear strengths and weaknesses in
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emerging forms of collaboration and knowledge creation stemming from the manner
in which participants are embedded in particular interactional configurations. Given
that the level of diversity in the knowledge creation process is one of the key
indicators of optimal collaboration (standing alongside the knowledge creation
outcomes themselves), the extent of social embeddedness represents a crucial
determinant for collaboration. In large-scale and complex systems of knowledge
creation, embeddedness needs to be considered from the perspective of coeditorial
work. Moreover, the concept of embeddedness is in fact coextensive, at least in part,
with a core attribute of social order, patterned interactions.

Collaborative coeditorial networks offer unique opportunities for operationaliz-
ing a variety of research questions about embeddedness and, ultimately, social order.
First, they can be used for mapping complete interaction graphs. For instance, on
Wikispaces, a widely used wiki service, every action is recorded and sequentially
ordered, just as on Wikipedia. By mapping interactions that occur as multiple
users coedit the same page, we gain the opportunity to explore social graphs
of interaction in their entirety and across time. Further, the social structure of
Wikispaces incorporates node-level attributes that provide longitudinal information
regarding typical and atypical node behaviors at various stages of the network’s
development. Most importantly, coeditorial graphs speak about the degree of social
embeddedness, which may be conceptualized as social work with peers or with
community leaders that leads to social order.

The notion of social embeddedness (Granovetter 2005; Uzzi 1996) in network
theory has highlighted the fact that network formation is necessarily intertwined
with various types of social relations including personal connections, trust, social
capital, and co-work. It acknowledges the dynamic nature of the systems of social
relations within which individual actions are embedded (Granovetter 1983), and
it can thus be used to examine how social structures, technological systems,
and individual actors interact with each other. It is extremely productive, then,
to visualize the structure of collaboration at the level of the work performed
and content produced and to measure the attributes of and relationships between
coeditors (i.e., who interacts with whom).

Early work on Wikispaces focused on visualizing histories of edits made
to Wikipedia articles over time in order to operationalize collaboration patterns
(Wattenberg et al. 2007). More recently (Leskovec and Sosič 2016), much more
complex approaches have been proposed (Brandes et al. 2009; Halatchliyski and
Cress 2014; Kenis and Lerner 2014). Of course, social embeddedness research is
not without costs on pseudonymous sites like Wikipedia. While this approach holds
value, it remains limited in its ability to process large numbers of edits and does not
consider the identities of authors/collaborators involved in a particular instance of
editing (who edits what). Still, this is a temporary and small problem, as a diverse
array of studies has expanded the vitality of the approach from those conducted in
the early days (Brandes et al. 2009; Capocci et al. 2005) to the more contemporary
(Kenis and Lerner 2014), building upon the analysis of online interactive content
pioneered two decades ago (Barabasi and Frangos 2002).
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Any social structural characterization of collaborative spaces via graph
approaches should include properly chosen system-level measures. We propose
the following subset which, much like entropy, can be used across projects and
domains as standard methods of group characterization:

1. Degree assortativity (Newman 2010), which represents the tendency (or lack
thereof) for well-connected users to interact with similarly well-connected users
rather than those with more or fewer network connections

2. Degree and betweenness centrality (Freeman 1978), which represent the relative
importance of an individual within a community based on his or her connections
and position within the network

3. Reciprocity (Shi et al. 2007), which on Wikipedia represents the tendency
for users to edit the text of others who have already edited their own textual
contributions

4. Transitivity (Newman 2010), the tendency toward editing an individual’s
text if he or she has already served as a coeditor for one of a user’s own
coeditors

5. Multiplexity (Haythornthwaite 2001), the tendency toward connecting with
other users in multiple distinct networks (such as the collection of articles and
“Discussion” pages or articles housed in different categories representing distinct
knowledge bases)

Each of these graph characteristics is more than a measurement procedure; it
is a yardstick and a point of articulation for connecting multiple datasets and
data processes around a theoretically grounded idea of social structure. Anchor-
ing heterogenous data alignment strategies around these measurements allows
researchers to see how group configurations and, at the same time, individual
behaviors (assessed via degree and betweenness centrality) emerge and ultimately
stabilize across collaborative communities. Furthermore, such measures can be
correlated with output-related activity. This provides the capability to track the
impact of structural features on the collaborative process overall and on outcomes in
particular. Comparisons of structural features of assortativity and betweenness with
longitudinal changes in overall activity levels may suggest fine-grained structural
impacts on effective collaboration.

The application of common network analytic measurements across collaborative
online spaces is more than an issue of convenience. It may, in fact, presage socially
intelligent data factory processes. As high-level indicators, network measure-
ments sort and define contexts of interaction. Their differential effect can suggest
ready-made explanations for differences between groups and collaborative spaces.
Findings derived from this type of research may allow us to identify sociostruc-
tural determinants that influence participation in the knowledge creation process
and yield optimal collaborative outcomes. They may also enhance our under-
standing of the factors contributing to sustainable, socially intelligent systems of
collaboration.
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Final Considerations

The development and utilization of standardized metrics for characterizing col-
laborative big data sets is not only of theoretical import; it also has practical
significance, as such metrics can be used in the development of a next-generation
collaborative platform for knowledge production. They provide a venue for dynam-
ically analyzing the processes of collaboration, and they may support compelling
visualization and self-moderation techniques, as well. New collaborative platforms
may be strategically built around these metrics, as they provide invaluable avenues
of assessment for the very functionality of the collaborative space. At the same
time, as users engage with the platforms, the effects that visible visualizations and
metrics have in terms of inspiring or facilitating self-moderation or collaboration
can be further mined for additional theoretical insights.

Seen from an integrative perspective, the deployment of specific metrics that are
theoretically grounded across problem spaces provides multiple advantages. Our
vision of integrating and aligning data via metrics referring to social structure,
social collaboration, and social embeddedness may contribute to the science of
collaborative systems in these ways:

1. They extend and make more tangible the concept of integrated data factoring
within collaborative knowledge production.

2. They provide guidance in developing visualization tools for collaborative popu-
lations and especially of their efforts, review, reputation, and relationships.

3. They offer integrated real-time interactive tools to facilitate processes of collab-
oration.

4. They yield longitudinal data that can subsequently be used to further refine
existing models of collaborative processes and devise increasingly socially
intelligent data factoring tools.

5. They facilitate indexing and searching of new collaborative opportunities via
code collaboration, sharing, and reutilization.

To conclude, the vision we offer provides theoretical and metric-based guidelines
for modeling and visualizing the emergence of effective social structuration discov-
ery in collaborative spaces. Theoretical models based upon entropy measurement
and social network modeling can also be further refined as a consequence. We hope
that these suggestions may spur the further development of integrated approaches to
studying collaboration online.
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Chapter 7
Lessons Learned from a Decade of FLOSS Data
Collection

Kevin Crowston and Megan Squire

Introduction

The FLOSSmole project began in 2004 as a multi-institution, multidisciplinary
effort to gather, share, and store data and analyses about free/libre open source
software (FLOSS) development for academic research (Howison et al. 2006). The
original goals of the project were to coordinate among the ongoing collection and
analysis efforts of different research groups studying FLOSS development, thus
“reducing duplication and promoting compatibility” between both the data sources
themselves and the findings from different research groups.

The initial data sources for FLOSSmole included easy-to-collect “low-hanging
fruit” (Conklin 2006) such as metadata from web-based project repositories like
SourceForge and Google Code. Later, FLOSSmole data grew and became more
varied, comprising dozens of disparate sources and data types. Over the years, hun-
dreds of research papers have been written using FLOSSmole data by researchers at
every level, from undergraduate students to multi-institution teams.

Along the way, FLOSS development practices and FLOSS itself have changed
and are no longer considered as peculiar a phenomenon as it was initially. The orga-
nizing principles and development practices of FLOSS have now been thoroughly
integrated into mainstream business, media, and scientific research. Accordingly,
the data sources within FLOSSmole have also changed in important ways, reflecting
the changes we see in the contemporary FLOSS ecosystem. Some of these changes
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include the decline of the project-based software forge as an organizational entity
and the concurrent increase in transparent, social development practices in non-open
“walled gardens,” many times without a traditional FLOSS license.

As FLOSSmole continues to serve the research community into the future, we
will continue to face many challenges in collecting and analyzing data for such
a constantly evolving, dynamic community of practice. This means we will need
to collect new data sources, support new and expanded analysis techniques, and
pursue intersections with complementary research fields such as open data and open
communities.

This chapter will serve as an important documentation of the history of FLOSS-
mole, starting with an overview of the data sources and data types in our repository,
and describing the kinds of findings researchers have learned from analyzing this
data. Next, we outline the challenges we have faced along the way, including data
collection, data validation, and data integration. Our hope is that these insights can
illuminate possible warning signs and courses of action for other research groups
hoping to build similar systems. Finally, we outline our many goals for future growth
and expansion of the system.

Data Sources and Data Types

FLOSSmole collects, cleans, stores, and analyzes data about FLOSS and FLOSS
development from a variety of online sources, including open source software
forges, directories of open source software resources, individual project com-
munication channels, and other project- and developer-related sources. Our data
collection methodology consists of a spidering step where we automatically down-
load data from the target online archive, a cleaning and parsing step where we extract
the interesting bits of information from the downloaded data, and a storage step
where we add metadata so that we can preserve the data for the long term. Our
artifact collections are distinct, each with their own attributes and characteristics,
but are also part of a common schema that can be federated as necessary. Some
examples of each type of collected artifact are given below, along with ideas for the
types of questions that can be answered with each.

Forge Metadata

Traditionally, a software forge is a collection of centralized, online tools designed
to support collaboration between software developers working on a team to produce
a product. The idea of a forge grew out of the earlier concept of a CDE, or
collaborative development environment. CDEs were first positioned in the literature
as web-enabled and virtualized extensions of the traditional developer desktop IDE
(integrated development environment) (Booch and Brown 2003). Well-known IDEs
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include Eclipse, ActiveState Komodo, or Microsoft Visual Studio. An IDE typically
provides features such as a text editor, shell, file uploads, compiler integration,
interactive debugger, integration with bug tracking systems, integration with version
control systems, etc. The CDE was described by Booch and Brown as “a virtual
space wherein all the stakeholders of a project...labor together to ...create an
executable deliverable and its supporting artifacts.” A software CDE is, then, a
set of tools that facilitates the same tasks as a software IDE (writing code, writing
documentation, finding and fixing bugs, distributing releases) but does so in a way
that meets the needs of distributed (over both time and space) groups of developers.

With the commercialization of the Internet in the mid- to late 1990s, software
development teams continued to become more geographically dispersed and depen-
dent upon Internet-based tools for collaboration. FLOSS teams in particular tended
to collaborate in this decentralized way, and many early software forges were
specifically created to be used by FLOSS teams. During the late 1990s and early
2000s, many FLOSS-oriented software forges sprung up, offering some kind of
combination of hosted services, including file downloads, email mailing lists, wikis,
source code control, chat or forums, documentation hosting, and so on. Examples of
early FLOSS software forges include SourceForge, RubyForge, Launchpad, GNU
Savannah, Google Code, and Microsoft CodePlex. Each of these sites hosts (or, in
the case of Google Code, hosted) between several thousand and several hundred
thousand projects. Today, while not strictly a FLOSS forge, the very popular Github
site hosts over 35 million projects, providing source code control, bug tracking,
comments, and other development tools.

Collecting Data from Forges Because of the large number of projects available
on a forge and the rich possibilities for studying so many project artifacts (e.g., for
cross-project studies), these FLOSS forges were some of the first places that we
began collecting data when the FLOSSmole project began in 2004. SourceForge, as
the largest and easiest to use forge, was a very rich source of data about projects,
developers, and teams.

The type of interesting data that is typically available on a forge includes both
metadata and project artifacts. Metadata includes information about the projects,
teams, and developers. Artifacts could include source code, bug reports, mailing list
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messages, documentation, and the like. Which artifacts are available on which forge
depends solely on the forge itself, what data it stores about a user or project, and
what the forge chooses to make available to others to see.

In a 2011 paper (Squire and Williams), we investigated which metadata elements
and which artifacts were made available at each of the forges in existence at that
time, so that we could determine the most fruitful avenues for data collection.
The full results of the 2011 forge study are available as an interactive web
page on FLOSSmole.org (link: http://flossmole.org/content/everything-you-ever-
wanted-know-about-software-forges-code-forges-june-2011). Below we show the
lists of the 60 metadata elements and artifacts that we tracked.

Forge Hosting Features
• Bug/issue tracking system
• Database management system
• Designated spot for documentation
• Discussion forums for teams
• Mailing list service for teams
• News/announcement feature
• Project management software
• Survey module for team developers
• Task management software
• Trac for development teams
• Web space for project
• Wiki for development team

Forge Policies
• Is itself ad-free
• Allows use of anonymous ftp by projects
• Provides public, remote API into project data
• Requires approval for hosting
• Provides a directory or list of all projects
• Provides DOAP descriptions of each project
• Does not require payment for FLOSS projects
• Allows only FLOSS projects to host there
• Allows use of gravatar for user profiles
• Provides OpenID for login
• Has a commercial or paid option
• Provides shell access

Project Artifacts Available at Forge
• Bug tracker archives are publicly available
• Forum archives are publicly available
• Mailing list archives are publicly available
• Project-level news stream or rss activity
• Project reviews are publicly available
• To-do list or task manager list is publicly available

http://flossmole.org
http://flossmole.org/content/everything-you-ever-wanted-know-about-software-forges-code-forges-june-2011
http://flossmole.org/content/everything-you-ever-wanted-know-about-software-forges-code-forges-june-2011
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• Wiki change history pages are publicly available
• Wiki pages are publicly available

Project Metadata Available at Forge
• How active this project is (ranking)
• Administrators on this project
• Project’s development status
• Environments project is designed for
• One or more external URLs for project
• Project can take donations via the forge
• Project’s intended audience
• Persistent internal URL for each project
• Date of last release
• License(s) the project is released under
• List of members on this project
• Operating system the project is designed for
• Programming languages used to write project
• Textual description of the project
• When project was registered on this forge
• Project activity statistics
• Tags describing this project
• Topic of this project
• Translations for this project

Revision Control Available at Forge
• Arch access for teams
• Bazaar access
• Software to support code reviews
• CVS access
• DARCS revision control system
• Git access
• Mercurial access
• Microsoft Team Foundation Server
• Subversion access

These lists of the features and artifacts that can be collected have provided some
of the basis for what FLOSSmole has collected over time and from what forges. For
example, we found that RubyForge provided some of the same data as SourceForge,
so we began to collect data from there in 2006. When RubyForge closed down and
was succeeded by RubyGems, we began to collect data from this new forge starting
in 2015. Subsequently, we have been able to use entity matching techniques to
connect approximately 5000 RubyForge projects to their new RubyGems identities
(Squire 2016). Other forges we have collected from include Google Code, Tigris,
ObjectWeb, Alioth, Launchpad, Github, and GNU Savannah.

While forges are attractive as a quick source of data, we quickly learned that
collecting data from SourceForge was fraught with peril (Howison and Crowston
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2004). For example, automated scripts required a rewrite each time the page layout
of the site changed. The calculation of data item shown on a forge project page
could evolve over time, complicating longitudinal studies. These issues reinforced
the value of sharing the effort of collecting data. Another change during this time
frame was when another research team [SRDA] (Van Antwerp and Madey 2008)
made arrangements with the company running SourceForge to receive periodic data
dumps, making it unnecessary to collect this data via spidering. Later, some forges
created search APIs that made it much easier to collect data about specific projects.
For example, currently the GHTorrent service [Gousios 2013] samples the Github
project API and provides a query interface to it.

Directory Metadata

A second source of data has been directories of FLOSS projects. In the early days
of FLOSS, it was important to some users to be able to find software packages
that had been developed using free and open principles and which were distributed
with free or open source licenses. To help keep track of what FLOSS projects
existed and where to find them, several groups created web portals or directories.
Examples include Freshmeat.net (later called Freecode) and the Free Software
Foundation (FSF) Directory. The necessity of these directories has declined in
recent years due to the ubiquity of FLOSS projects and development methodologies
and better integration of project search capabilities in software package managers.
Freshmeat.net itself was sold several times during the 2000s, was rebranded as
Freecode in 2011, and then became read-only in June of 2014. Black Duck Software
manages a directory called Ohloh, which has rebranded as Open Hub, and claims to
index 672,000 projects.

Since the primary mission of these FLOSS directories is to help users find
software that matches their needs, the directories are typically organized as one
page per project, with each project page listing metadata such as license type and
version information, where to find the project (a URL), a contact name for the
project, and sometimes basic download statistics (or in the case of Freshmeat.net
and Open Hub, a type of popularity metric). The FSF Directory is similar, except
that it limits listings to only projects that meet the FSF’s definition of free software
and which are distributed with a free software license.

Open Hub is an interesting case, as it represents more of a meta-directory with
facts aggregated from other sources. Specifically, Open Hub creates a page for each
project, but uses data from other forges and directories to populate the facts about the
project. For example, the FLOSSmole page on Open Hub seems to have most of its
information pulled from an older SourceForge listing for our project. (FLOSSmole
moved off of SourceForge to Google Code in 2009, and then in 2013 we moved to
Github. Presumably Open Hub intends for this updated information to be manually
corrected on Open Hub by a person who claims the title of project manager.) Open
Hub is also different in that it attempts to suggest similar projects based on tags

http://freshmeat.net
http://freshmeat.net
http://freshmeat.net
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or topics, and it attempts to determine other facts automatically about the project
based on an analysis of the source code. For example, Open Hub tries to estimate
the COCOMO development effort that went into the project or the comment density
based on source lines of code. It also tries to identify the top programming languages
and how recently the project has been edited and by whom. This automated analysis
occasionally yields odd or amusing results, for example, the FLOSSmole Open Hub
listing states that the project was written between 2004 and 2009 (apparently based
on our SourceForge hosting years), was written in Ruby (it was not), and has an
COCOMO model project effort of 106 years.

Collecting Data from Project Directories FLOSSmole began collecting from
Freshmeat.net in June of 2005 and continued until it shut down in 2014. During this
time, we collected data from Freshmeat.net 65 times. Rather than scraping the text of
each project page, we used an RDF data dump provided by Freshmeat/Freecode. We
collected data from the FSF Directory 36 times starting in 2007 and going through
2012. For FSF, we had to scrape the project metadata from the FSF Directory project
web pages themselves, until a site redesign in 2012 caused us to stop collecting from
there.

Details we collected about Freshmeat.net projects include dates (date project was
added, date the project was last updated), URLs (home page, mirrors, locations of
various packages), project ratings (popularity, vitality, number of subscriptions),
project descriptions, screenshots, software license, release information (version
numbers and dates), project authors, project dependencies, and tags to describe
the project. Tags include topics for the project, user level, operating system it was
designed for, and so on.

Metadata we collected from the FSF Directory varied as the site was redesigned
several times, but generally we were able to collect project names and URLs, dates
(release date and registration date on the site), descriptions of the project, what kind
of user it is intended for, developers on the project (who and how many), categories
for the project, license, related projects, and requirements (dependencies).

Because we collected from these directories so many times over so many years,
we have the ability to see changes in the projects over this time period. For example,
the Linux project was first listed on Freshmeat.net in 2005 with a CCC tag, but
that tag was removed in 2012. The Bitcoin project was listed with several language
translations in 2009, including Chinese, which was added in 2012. When the project
metadata was updated on the directory, we have a record of the update and can learn
about the evolution of projects in this small way.

Individual Project Website Metadata

Another important source for data about FLOSS projects is the individual project
web pages themselves. Many FLOSS projects use a forge as a central location for
their development activity and downloads, but many others do not. The Apache

http://freshmeat.net
http://freshmeat.net
http://freshmeat.net
http://freshmeat.net
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family of projects, for example, is hosted on the Apache.org domain. Each of the
300 or so Apache projects may choose to use a non-Apache forge for organizing or
mirroring code releases (Apache Spark, for example, mirrors its code releases on
Github), and some FLOSS directories chose to list Apache projects. For example,
Apache Mina was listed on Freecode starting in 2005. However, many of the
metadata fields are blank, so if we want to find out substantive details about these
projects, we need to use their actual project pages.

Collecting Data from Project Websites The task of collecting data from individ-
ual project websites means developing a separate collector for each site. Apache
projects may all live on one central apache.org domain, but each project has a
distinctive web presence with information about the project stored in a unique
format and page structure, complicating data collection. Nonetheless, in 2013
FLOSSmole began attempting to extract several pieces of data from Apache
projects, including names of developers and other contributors who have signed
a contributor license agreement, developer roles on the project (Squire 2013a), and
Twitter handles (Squire 2013b). In 2014 FLOSSmole was given a donation of DOAP
(description of a project) data for all Apache projects by Davide Galletti. These
DOAP files are optionally listed by each Apache project on its apache.org-hosted
site and include structured data about each person working on the project, their
roles, and the versions of the project.

Communication Archives and Social Media

Finally, over time, FLOSSmole has been collecting more and more communication
artifacts from FLOSS projects. Owing to the decentralized and distributed nature
of FLOSS development, most FLOSS teams prefer to communicate online, and
many communities prioritize the transparency and availability of these commu-
nications to enable broad participation in the work of the team and as a form
of institutional memory. Apache’s own guideline for project management com-
mittees (PMCs) states “Virtually all PMC communication should happen on the
dev@ list or any other appropriate public mailing list” (link: http://www.apache.
org/foundation/governance/pmcs.html). The Apache Code of Conduct states “We
preferably use public methods of communication for project-related messages,
unless discussing something sensitive” (link: http://www.apache.org/foundation/
policies/conduct.html). The level of commitment to email is similar on the Linux
project, where the Linux Kernel Mailing List (LKML) receives hundreds of mes-
sages each day. Message content includes hammering out changes to procedures,
sharing and critiquing code fixes, discussing priorities for future development, and
so on.

In addition to email, many FLOSS projects use IRC to support users and
developers. The Ubuntu distribution of Linux has 360 different discussion channels

http://apache.org
http://apache.org
http://apache.org
http://www.apache.org/foundation/governance/pmcs.html
http://www.apache.org/foundation/governance/pmcs.html
http://www.apache.org/foundation/policies/conduct.html
http://www.apache.org/foundation/policies/conduct.html


7 Lessons Learned from a Decade of FLOSS Data Collection 87

on the freenode IRC network. Its channels are organized by topic (Xubuntu,
website, news, bugs), demographic (youth, women), and geography (us, za, cn)
or are specifically designated for meetings. A disadvantage of the synchronous
communication in IRC is that it is unlikely that all interested parties will be online
at the same time. Making logs available partly mitigates this problem. For example,
the logs for the Ubuntu IRC channels are posted each day for anyone to read. Other
FLOSS projects that use IRC and publicly post the logs include Django, Perl6,
Bitcoin, Openstack, Puppet, and some Apache projects. Still, IRC may be more
suitable for uses such as user support or quick answers to questions, rather than
discussions that should involve multiple points of view.

Another communication-oriented data source we have collected is the channel
topics for freenode IRC channels. Freenode is a public IRC server where anyone
can create a channel about any topic. Each channel operator can write a brief
description (“topic”) describing the purpose of the channel. For example, the Bitcoin
IRC channel on Freenode listed the following topic on April 8, 2015:

v0.10.0 j Bitcoin http://bitcoin.org/ j https://en.bitcoin.it/
wiki/Faq j No: pricetalk (#bitcoin-pricetalk), ads, trading
(#bitcoin-otc), begging, NOR altcoins j Web wallets can steal
your money j URLs are often SCAMS or MALWARE j All keys gener-
ated with brainwallet.org should be considered compromised

This description tells what software is being discussed in the channel, gives
additional URLs for where to find more information, sets a few social norms (“No:
pricetalk..., ads, trading..., begging...”), and gives some general admonitions about
frequent problems on the channel (“URLs are often SCAMS or MALWARE”).
These channel topics have been important for learning about the social expectations
of a channel. For example, in many IRC chat channels, it is considered bad behavior
to paste in large amounts of text or source code. Instead, IRC users prefer to trade
links that point to the source code (e.g., links to a pastebin copy of the text or a
JSFiddle copy of the text). In Squire and Smith (2015) we examined the proliferation
of pastebin links in email mailing lists, but we find similar suggestions in IRC
channel topics, as well as in the IRC channel chat texts themselves.

FLOSS researchers have studied FLOSS developer email for a variety of
reasons such as to understand team culture, communication styles, decision-making
practices, efficacy of bug fixing and leadership structures, and so on. To study these
topics, researchers have applied a variety of techniques to the emails including
social network analysis, text mining strategies, qualitative analysis of content, and
quantitative analysis of the email headers. A review of email mining techniques used
in FLOSS research is found in Squire (2012).

Collecting FLOSS communication archives like IRC and email can benefit other
disciplines beyond software engineering and FLOSS studies. Applications where
large amounts of email and IRC data will be helpful include natural language tasks,
for example, learning to separate source code from human speech or performing
sentiment analysis. Another area where IRC has been suggested as an interesting
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application area is in text summarization, for example, in Zhu and Hovy (2005)
and Sood et al. (2013). In both these papers, human-generated summaries of the
IRC chat channel for the FLOSS GNUe project were used to train a computerized
IRC chat summarizer. However, over time, the gold standard human-generated
summaries that these papers were based on were lost, as were the original GNUe
IRC messages. We rebuilt both of these data sets and made them available
on FLOSSmole (link: http://flossmole.org/content/software-archaeology-gnue-irc-
data-summaries).

Collecting Communication Archives When evaluating candidates for data collec-
tion, we chose to only collect IRC and email logs from projects which have publicly
posted the archives and which have a tradition or expectation of public consumption
of the logs. We do not run “log bots” that join an IRC channel and log the chats,
and we do not join mailing lists simply to create archives of the content. However,
if a project makes its logs available, we may choose to work with them, as was the
case with Django, Bitcoin, Ubuntu, and the other projects mentioned earlier. For
email, we have collected messages from projects hosted on the Tigris forge, from
the LKML, and from Apache.

Collecting data from communication archives has all the same problems as
collecting data from other sources, including changes in the data formats and page
layouts. However, in collecting communication archives, we have noticed a few new
problems unique to these data sources. First, the data is much messier. Text archives
for software projects are replete with source code, unicode, html text, attachments
(in the case of email), and other challenging data cleaning issues. Second, because
communication is so central to the workings of the team, teams tend to move servers,
change software, and upgrade platforms frequently. These changes lead to lapses in
archives and page layout changes and occasionally mean that we can no longer
collect data from a source, leaving our collection incomplete.

To illustrate this last issue, we describe the case of WordPress, the open source
publishing platform, and its IRC channels. Beginning in 2009, WordPress created
and made publicly available chat logs for several of its channels, including a
general chat channel, numerous developer channels, and channels for subprojects
like bbPress and BuddyPress. However, in 2014, WordPress announced that their
developer chat would be moved to Slack, a privately owned real-time communica-
tion platform (link: https://make.wordpress.org/core/2014/10/29/modernising-real-
time-communication/). Since this time, the chat logs for WordPress are no longer
available for download or study. Other FLOSS projects that have moved to Slack as
of this writing include Babel, Bootstrap, Apache Cordova (still maintains an email
list), Mido.net, Socket.io, Ghost, and Bitcoin Core.

Nonetheless, many FLOSS projects still host message archives for their team
communication, and FLOSSmole does collect some of these, for example, for
Apache projects. There are also third-party archives for some email lists; MarkMail
and Marc.info are general collections of thousands of mailing list archives. Many
universities also host email archives. For example, to produce our cleaned LKML
collection, we started with emails collected from the Indiana University archive.

http://flossmole.org/content/software-archaeology-gnue-irc-data-summaries
http://flossmole.org/content/software-archaeology-gnue-irc-data-summaries
https://make.wordpress.org/core/2014/10/29/modernising-real-time-communication
http://mido.net
http://marc.info
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Data Model and Data Availability

Given the array of FLOSS data artifacts that FLOSSmole has collected, it is
important to understand how they are organized and stored. In this section we
will explain the data model that underlies the FLOSSmole system and some of the
historical reasons that it is designed in this way.

Since we are primarily a data repository that began by periodically collecting
data from FLOSS forges, FLOSSmole is still organized around the concept of a
“forge” and “datasource_id”. Each place we collect data from is still called a “forge”
(although some are directories and some are individual projects, as described
above). In addition, each time we collect data from one of these places (or forges),
we give that collection a new, unique number, which we call a “datasource_id”.
Across the entire FLOSSmole system, the one thing all the tables have in common
is the idea of a datasource_id. Every piece of data is stamped with its datasource_id,
indicating where the data came from, when it was collected, and who collected it.
The figure below illustrates the relationship between a forge and a datasource_id.

Below are examples of the forges table and data sources table, each with one
sample record shown.

Forges

Column Sample data

forge_id 71
forge_abbr RG
forge_long_name RubyGems
forge_home_page http://rubygems.org
is_forge 0
is_directory 1
is_other 0
established 2009
organization RubyGems

http://rubygems.org
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Data Sources

Baudry Baudry

datasource_id 61240
forge_id 71
friendly_name RubyGems Nov 2015
date_donated 2015-11-06
contact_person msquire@elon.edu
Comments RubyGems Nov 2015
start_date 2015-11-06
end_date 2015-12-04

Storing communication raises its own issues. We have experimented with several
ways to store email data, including in a standard RDBMS where one row equals
one email, with the most relevant email headers parsed into columns (sender, date,
message body). We have also tried creating document-oriented databases of email,
where one JSON record equals one email and headers are unlimited (Squire 2013c).
Storing IRC data is more straightforward. For IRC, we have created relational tables
where each table is a channel and within the table one row equals one chat line.
Depending on what is available in the archive, we create columns for the timestamp,
the message sender, the message line, and whether the message is a system message,
an action message, or a standard chat message.

In the FLOSSmole system, each collection of data is organized into databases
with other, similar data. For example, our data from Freshmeat.net/Freecode has
its own database with seven tables to hold the data just for these projects. The
LKML email has its own database, the Apache IRC channels are grouped together
in their own database, and so on. With 31 databases and hundreds of tables, we
are unable to show a complete entity relationship diagram (ERD) in this paper,
but all the databases and tables are described in a color-coded set of ERDs on
the FLOSSmole website. The database can be queried from any MySQL database
client, including from Jupyter notebooks such as those hosted by the Wikimedia
Foundation. Database access instructions can be found on the flossmole.org site.

In addition to the queryable database, some of the data has been made available
in raw text format as well as compressed text dumps of the MySQL database. These
files are also available through the FLOSSmole website and require no sign up or
special access permissions. We should point out that not everything in the MySQL
database is available in the flat files or database dumps and vice versa. For instance,
IRC logs started out as text files that we cleaned and imported into the database.
There is thus no need to re-create text archives for IRC chat or emails that came to
us as text archives. Conversely, a few of the directories on the FLOSSmole server

http://freshmeat.net/Freecode
http://flossmole.org
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include files that are not in the database. One example is the files of links to IRC
and email examples of insults, jokes, and profanity described in (Squire and Gazda
2015).

What Researchers Have Learned from This Data

The data collected by the FLOSSmole project has been used in several hundred
published research papers on a diversity of topics and with many different research
approaches. Many of these papers have been collected on the FLOSShub site (http://
flosshub.org/). In this section, we describe a few of these papers to give a sense of
how FLOSSmole data have been used.

A number of researchers have used FLOSSmole data as a convenient source of
basic metrics about FLOSS development, e.g., to determine the number of projects
on Github (Biazzini and Baudry 2014), to create a list of projects on SourceForge
(Mockus 2009), or to obtain a list of developers to survey to Kina et al. (2016).
Others have used FLOSSmole for general project metadata to augment other data
collection, e.g., project descriptions to determine the application domain of a project
whose source code is being analyzed (Zhang et al. 2013).

Other researchers have used the data more intensively to examine relations
between project features. For example, Samoladas et al. (2007) used machine
learning techniques, including classification rules and decision trees, on data from
1 month to predict the metrics for the following month. Often, the independent
variable in these studies is some measure of project success. Crowston et al. (2006)
proposed a framework for FLOSS success measures and used data from FLOSS-
mole data to operationalize three example measures. Wasserman and Ashutosh
(2007) used FLOSSmole data to assess a project readiness for business use. Rossi
et al. (2010) examined how download rates (a measure of user uptake) were affected
by new releases. They found that different projects showed different impacts of a
new release, suggesting different usage patterns for the software. Other researchers
have examined the state of development of a project. For example, Schweik and
English (2012) proposed a way to use the data to classify projects as successful or
abandoned. Piggot and Amrit (2013) had good success using eight project metrics
to predict the state of a project.

Researchers have also used FLOSSmole data to look in more detail at the
software development processes within projects. For example, one theme in this
work is the nature of leadership in FLOSS projects. Valverde et al. (2006) compared
FLOSS development to the self-organizational processes of wasp colonies and
noted that a small number of developers seemed to stand out from the rest. Taylor
et al. (2008) analyzed authorship patterns proposing the concept of author entropy.
Crowston et al. (2010) used social network analysis to identify project leaders, but

http://flosshub.org
http://flosshub.org
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noted that the technique also seemed useful for identifying interesting periods in
the project history, e.g., when leadership was changing. Corona and Rossi (2013)
extended the analysis to look at “linchpin” developers, those who connect across
multiple projects.

Finally, a few projects have looked at the issues in connecting data across
multiple repositories. Howison (2008) and Iqbal et al. (2012) suggested that
Semantic Web technologies could be useful in making the linkage between projects
hosted in different places. Rezende et al. (2010) suggested the use of data mining
techniques on these repositories to identify clusters of similar projects.

Challenges

In this section we describe some of the ongoing challenges we have with main-
taining and growing FLOSSmole as a data repository. Rather than just detailing
the frustrations of collecting and storing large-scale data from a group of evolving
online resources, our focus in this section will be to outline some of the new
developments within the FLOSS ecosystem itself that challenge our ideas of what
data elements are important and how they should be used.

Challenge: Availability and Integration of the Data

As we stated earlier, the goal of FLOSSmole is to collect and store data about free,
libre, and open source software and its development. We began collecting data from
software forges because they were an easy place to get a lot of data in a relatively
organized format. However, the forge landscape itself has changed enormously
since our project began in 2004, and this has impacted where we get data and how
much we can get. Our initial vision was very much driven by the visible success of
SourceForge. SourceForge, launched in 1999, has always tried to be a one-stop place
where developers could collaborate to create FLOSS and users could download
the software. The model of SourceForge is designed around the idea of a project,
each of which has an owner, contributing developers, and users. SourceForge
hosts mailing lists, bug reporting software, databases, wikis, downloadable content,
documentation, and discussion boards and provides source code revision control
services. As of this writing, the site claims to host 430,000 FLOSS projects and
3.7 million registered users. The rate of new project registrations on SourceForge
from 1999 through 2014 is shown in Fig. 7.1. Projects that were created without any
textual description are likely throwaway test projects or spam projects, and these are
shown in blue. The recent decline in the volume of registrations is clearly visible.

A more recently successful site is Github. Launched in 2008, Github currently
has over 14 million users and 35 million public repositories (similar to projects),
completely eclipsing the size and scale of SourceForge in a relatively short amount
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Fig. 7.1 New project registrations on SF (1999–2014)

of time. Rather than project, Github is organized around the idea of a user who
can create public or private repositories/projects and who may be a member of
teams. The services provided to users and teams are limited to revision control, bug
reporting, and a few basic documentation services. Github is growing at such a rate
that makes it difficult to create a timestamped “static” mirror of its data. Instead,
Github provides an API to allow searching of its projects and users. Numerous
projects have been started to provide a queryable interface to Github data, for
example, the very popular GHTorrent.org and GithubArchive.org. Because Github
is now the most popular repository for any project – whether or not it is explicitly
FLOSS – this has caused a mass exodus from other, formerly important FLOSS
forges. These older forges have languished or disappeared entirely (as was the case
with Google Code, Berlios, and JavaForge), as projects abandon them and move to
Github instead.

At the same time as the mass exodus away from the FLOSS forges and onto
Github, we notice a shift in the communication strategies for projects as well.
Most projects used to have an email mailing list and an IRC channel where most
development discussion happened. In many cases, these were hosted on the same
forge as other artifacts, enabling one-stop data collection. Currently we see instead
a multiplication of communication media, spread across multiple services, e.g., an
increase in the use of Slack for discussions (as noted above for WordPress), Pastebin,
and other paste-type sites to share code snippets and an increase in the use of Stack
Exchange sites for developer support (Squire 2015). Indeed, Github has completely
opted out of providing communication channels, with the exception of comment
threads on bugs. Many projects use Github only for source code hosting, preferring
to glue together a group of services to manage the rest of their communication and
coordination tasks. For example, they may use Github for posting code, Bugzilla for
bug reporting, Slack for real-time communication, an email list hosted at a university
or private corporation for asynchronous communication, and so on.

http://ghtorrent.org
http://githubarchive.org
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The FLOSSmole model of writing spidering scripts to collect all the metadata
and communication artifacts for a number of projects all hosted on the same FLOSS
forge has thus become more difficult to apply. Multiple spiders are needed as well as
techniques to identify connections across services. Slack is particularly problematic
for us since it affects the visibility of developer communication to researchers
(and other interested outsiders). Although there is a Slack-created archive of chat
messages, it is limited for our use in three important ways. First, the archives
are not available to anyone who is not invited to use the Slack channel, which
stretches the definition of a “public” archive. (For example, the address for the
WordPress archives is https://wordpress.slack.com/archives, but it is only available
to registered, logged in Slack users.) Second, the Slack message archive is created
inside a JavaScript front end, and while it is mostly browsable and searchable, it is
not easily scrapable or downloadable unless you are the team owner. Third, if you
are not the channel owner, attempting to create an archive of messages is likely a
violation of Slack’s Terms of Service.

In summary, the constant shift of projects from one forge to another and a
piecemeal approach to choosing services means that understanding the evolution
of a project over its lifetime is much more difficult. Compiling a story about a given
software project will necessarily involve integrating data from multiple sources,
including deciding which of many options is the canonical location for a project
as it forks and changes over time.

As an example, consider the Bitcoin project. As the highest profile and arguably
the most innovative cryptocurrency ever invented, Bitcoin started as a private code
base in 2008 with email messages sent to the cryptography mailing list. It then
moved as an open source project to SourceForge in January of 2009, then in
October of 2009 moved development to Github while keeping a mailing list on
SourceForge. It was entered into the Freecode directory in 2010 and archives of its
IRC channel were created. In 2011 leaders started a new mailing list for developers
at LinuxFoundation.org, and the Bitcoin Stack Exchange site was started in 2011 as
well. To build a data-oriented history of this, one project will require, at a minimum,
integrating data from these nine disparate, unconnected sources. We have not even
considered the various forks of the project or the connection libraries (for example,
Ruby connectors, Java connectors). When we consider that there are hundreds of
thousands of FLOSS projects, the job of collecting “all” the data seems indeed
daunting.

Challenge: Validity of the Data

We mentioned spam projects in passing earlier, but weeding out real projects from
spam projects continues to be a challenge. The figure below shows new project
registrations on the now-defunct Google Code FLOSS hosting site.

https://wordpress.slack.com/archives
http://linuxfoundation.org
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The sharp spike in May 2014 represents an enormous influx of new projects,
most of which were created as empty pages showing no details except for links
to advertising. One year earlier, in May 2013, Google had announced that projects
hosted on its services could no longer host downloadable files since so many of
the files were malware and copyrighted files. Google Code closed down entirely
the following year, in 2015. As we saw with the SourceForge graph shown earlier,
the problem of spam projects, fake projects, and spam is not limited to Google
Code alone. The SourceForge graph presented earlier with non-spam projects
shown in red was our attempt to describe accurately the state of new project
registration on that site, in light of a high number of spam projects. The challenge
for researchers using any data from software forges is to disambiguate the good
projects from the bad ones, and this is no different with FLOSSmole data, Github
data, Stack Exchange data, or any other data that comes from a site that allows open
contributions.

A further complication with Github is that projects on Github are not guaranteed
to be FLOSS, unlike some earlier FLOSS-only forges. Indeed, only about 20% of
the projects on Github are explicitly released with a free or open source license
(many have no license at all). This lack of license information makes it difficult
to figure out which projects to collect and which to ignore if we are interested in
studying FLOSS development specifically.
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Challenge: Providing Analyses of Data

The discussion above has focused on collection of raw data about FLOSS devel-
opment. Part of the FLOSSmole original mission statement was to produce and
distribute derived datasets and analyses. FLOSSmole collects data, and it also
provides some cleaned, augmented, or processed versions of that raw data. For
example, the Linux Kernel Mailing List email messages are provided in raw format
and in several cleaned formats as well: with headers removed, with source code
removed, with extraneous signature lines and whitespace removed, and so on. The
RubyGems data includes processed analyses for what the first release date was for
each gem in the collection. The Apache project data has been parsed to extract the
roles and corporate affiliations of each contributor on each team.

Still, the amount of processed analyses stored in FLOSSmole could be vastly
increased. To do so will require a larger number of donated data sets or a larger
core team of developers. Furthermore, the level of analysis could be increased, i.e.,
moving from observational trace data to measures of concepts of theoretical interest
(e.g., derived measures of leadership as in Crowston et al. 2010). As it stands, people
who use FLOSSmole data are encouraged to share it, and FLOSSmole offers to
create the data model and storage infrastructure for FLOSS-related, processed data
sets. However, few researchers have taken up this offer. An ongoing challenge is
convincing people to take advantage of the infrastructure to store and publicize the
results of their own work. The increased interest in data sharing to promote replica-
bility and to meet funding agency requirements may provide a further impetus.

Challenge: Usability of the Data

A further challenge facing FLOSSmole is making the collected data more useful
to and usable by researchers. A first step is simply describing what is there so
researchers can use it. The website does this at a basic level of indicating what
datasets exist, what they contain, and their provenance. A complication with the
latter is in describing how data have evolved over time. However, there is a more
challenging issue of explaining what the data mean and how they can be connected
to interesting research questions. To fully address this challenge will require better
documentation and instructions provided by a strong user community using the
datasets.

Challenge: Sustainability of the Project

A final challenge is the sustainability of the project: the effort needed to continue
to collect data and make it available. The project currently has no financial support
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and instead relies on donated time and facilities. Data collection and processing is
largely done by one project leader and her students. The current system of file and
database storage and access relies on donated facilities at Syracuse University. These
facilities fit the size of the community using the data, at least for the moment, but
a new CIO at Syracuse could start charging for computer/storage/network time. To
address the former challenge requires building more of a community around data
collection, so the project is not overly reliant on one person. (Ironically, FLOSS
projects face the same challenge to their sustainability.) To address the latter, data
could be moved to another host, perhaps one with a mission that is more specifically
aligned with the open source or open data movement.

Possibilities for the Future

The use of FLOSS development methodologies, licensing strategies, and business
models continues to grow. While many early FLOSS research projects sought to
define and explore this perplexing new phenomenon, today studying FLOSS is
an accepted – and in many cases an expected – part of many diverse research
programs. As such, FLOSSmole has gradually moved away from its early “mile
wide, inch deep” approach to data collection. Where we once tried to collect as
much (admittedly shallow) data from a software forge as possible, this is no longer
feasible or interesting in the age of Github’s exponential growth through 35 million
forked repositories. Therefore, several years ago, FLOSSmole began taking a depth
over breadth approach to some projects, for example, building in-depth studies of
particular FLOSS communities of interest. Our initial collection of the RubyForge
repository, and its follow-on successor the RubyGems repository, has morphed into
a 12-year long evolutionary history of thousands of projects as they grew and
then moved across the two sites. Our collection of data on the Apache family of
projects includes diverse artifacts such as board meeting minutes, email, IRC chat,
Twitter handles, and roles of people on each project as well as, in some cases, the
corporations for whom they work.

As we mentioned earlier, FLOSSmole has also begun to focus more on text
artifacts, particularly communication media such as IRC chat and email discussions.
One challenge for FLOSSmole in the future is that these communication channels
generate an enormous amount of traffic, especially on very popular projects. Many
FLOSS projects have mailing lists with hundreds or thousands of messages per day.
The Linux Kernel Mailing List, for example, includes 2.4 million emails starting
at its inception in 1995 through today. The Openstack developer IRC chat channel
has 390,000 lines of chat dialogue over 5 years, and the Openstack user channel has
created twice that many messages. The Ubuntu community created its general IRC
channel in 2004, and it has logged 30 million lines of dialogue in that time. Daily
traffic on the Ubuntu chat channel is typically in the range of 100–800 messages per
hour, with many days topping 1000 messages per hour. This creates minor storage
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questions for FLOSSmole, but more importantly it creates an attention issue. Do we
have enough time and attention to collect, clean, and store everything? Should we
attempt to collect the communication artifacts of many projects, or just for a few?
Should we only collect the developer channels or the user channels as well? Even
if we create space to collect the data, do we have the time and attention to analyze
it all? Right now we are collecting a small number channels and list archives, from
a variety of different sources, and using these to learn what is important and what
data other researchers find most useful. Projecting which projects will be important
or interesting in the future is certainly a challenge.

As we collect these richer data sources, our hope is that they will enable
researchers to tackle more difficult questions about software evolution, community
structure, and so on. Example questions that we hope our data will address include:
What issues are important to the developer and user communities? How does
decision-making happen? How do the leaders emerge? What is the organizational
culture of the group? How do all of these things change over time? How do various
communities compare to each other? These questions probably cannot be answered
with empirical, artifact-based research alone, but richer data sources can certainly
illuminate some aspects of each line of inquiry.
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Chapter 8
Teaching Students How (Not) to Lie,
Manipulate, and Mislead with Information
Visualization

Athir Mahmud, Mél Hogan, Andrea Zeffiro, and Libby Hemphill

Introduction

Information visualization is an appropriate method for displaying big data. How-
ever, the selective nature of information visualization can lend itself to portraying
information that lies, manipulates, and misleads. Most people are unlikely to
question these deceiving practices, so the ethical burden is placed on the designer
of the visualizations. The purpose of this chapter is to help students avoid some
of these inadvertent deceptions and make purposeful choices about the claims
their visualizations make. This would entail gaining a deep understanding of the
appearance of deceitful visualizations. There are debates in the visualization field
regarding data and the goal of visualization and even about the data involved
and data discussions mirror those about big data broadly. This is not surprising
considering that even data can be inaccurate or deceitful, so why would we expect
the visualizations that rely on this data to always be accurate?

There are numerous perspectives as to the purpose of visualization. One of
these is the use of visualizations to represent a concept or idea that is already
found in the physical world, such as maps (MacEachren 1995). Electronic, satellite-
based maps have taken map visualization to an entirely unchartered territory, as
they can communicate where a user is in real time, even during motion. A major

A. Mahmud (�) • L. Hemphill
Illinois Institute of Technology, Chicago, IL, USA
e-mail: athir.mahmud@gmail.com

M. Hogan
University of Calgary, Calgary, AB, Canada
e-mail: mhogan@ucalgary.ca

A. Zeffiro
McMaster University, Hamilton, ON, Canada

© Springer International Publishing AG 2017
S.A. Matei et al. (eds.), Big Data Factories, Computational Social Sciences,
https://doi.org/10.1007/978-3-319-59186-5_8

101

mailto:athir.mahmud@gmail.com
mailto:mhogan@ucalgary.ca
https://doi.org/10.1007/978-3-319-59186-5_8


102 A. Mahmud et al.

perspective for the use of information visualization is also to communicate or
explain information that provides a narrative (Tufte 1997). Unfortunately, a great
deal of information that is being communicated is done so by those who have
little or no expertise in the information they are conveying. The rise of the data
scientist job title to its near rockstar-like reputation comes burdened with the risk
that individuals who understand the numbers lack the knowledge to translate the
significance of those numbers and how they connect with one another. Information
related to medical conditions is not entirely similar to data about educational testing
or social media use. The ability to translate this information and make sense of the
information found within big data ultimately results in a narrative. This brings us
to the last purpose of information visualization. That is, to tell a story based on
the available data (Yau 2011). Without a story, visualizations are nothing more than
pretty pictures. But those stories can sometimes also lack a compelling one. We
conclude this chapter by providing a framework of exercises to encourage students
to reflect on the practice of designing good visualizations and avoiding some of the
common traps of poor visualization design.

Since the publication of J.C.B Grant’s An Atlas of Anatomy in 1943, medical
illustrations have served to simplify complex information systems for medical prac-
titioners and for surgeons in particular. Medical illustrations simplified information
for those who needed to see quickly and precisely the details of an operation without
being overwhelmed by the totality of information available through photography,
text descriptions, or live petri dish comparison. Illustrations were drawn by artists,
often women who only had rudimentary access to the field of medicine to which
they were greatly contributing. And yet despite the lack of official medical training,
it was illustrators who were best suited to convey the necessary data that was then
instrumentalized by (Western medicine trained) surgeons. The illustrator’s’ ability
to convey only what was important anatomically, and from a purely visual point of
view, was an essential (and still largely under documented) part to the evolution
of medical practices. And this is because of their expertise in communicating
information rather than in medicine per se.

We use this anecdote to make the point that while the tools for visualization have
evolved – from pen to paper to big scale data sets – the kind of visual thinking
and translating required to make sense of data, or make data make sense, remains
an expertise in its own right. Taking “raw” data and “cooking” it (Bowker 2006;
Gitelman 2013) means creating a narrative based on analysis. But of course this
is more difficult than it sounds because data is never “raw,” objective, or neutral
and the methods and systems for data analysis aren’t either. Machines don’t pump
out more accurate data than humans; humans are their programmers. Machines can,
however, handle much more data than a brain on its own can. However, whether
more is better is also a matter of the questions you pose of the machine, the
deployment of its algorithms and the logics of code and dispositions that underlie
it (Bivens 2015; Easterling 2014; Gitelman 2013). While some approaches are
more rigorous than others, we make the case here that in designing informational
visualizations, it’s important to know what methods you are using, what data is, and
its cultural and political significance at different junctures.
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What is data? When thinking about the collection, application, interpretation,
and manipulation of data, you might want to first consider the source of your data.
You want to ask yourself: Where does my data come from? In what context was
the data collected, and by which mechanisms? Data is always incomplete because
it’s collected in a particular way and often within fixed parameters. Especially with
large data sets, data may feel total or objective, but no data exists outside of the realm
of a (human) logic which generates the conditions of its existence. Over 40 years
ago, John Berger made a case for the inherent power of images. In Ways of Seeing
(1972), Berger described the ways in which visual representations of the world are
inherently ideological. We argue that the same holds true for representations of data.
Charts are not facts. Graphs are not truths.

If we return briefly to the question of medical illustrations, we might ponder
whether illustrations are less “truthful” than photographs? Perhaps the question
itself becomes problematic if it suggests that only one “truth” is possible or that
attempts at objective and accurate depictions are always inherently neutral, rather
than a product of specific processes and world views. What can we learn about data
representation from this example that can be applied to newer, bigger data sets? Why
is it important to recognize data as never raw and as always cooked? This kind of
recognition of data’s “loadedness” becomes the critical gaze necessary for designers
working on data visualizations and representations because “data visualizations
wield a tremendous amount of rhetorical power” as Catherine D’Ignazio (2015)
argues in her blog post, “What would feminist data visualization look like?”.
Expanding on D’Ignazio’s (2015) post, we ask: What shapes our current visual
landscape and its politics of representation? What’s at stake? Why is developing
a critical gaze on data visualization so important, now more than ever?

Many media scholars are currently addressing the invisible labor driven by and
driving online communications. Subjects include humans that function as code
or algorithms, such as those behind commercial content moderation (Irani 2015;
Roberts 2016), social media filtering mechanisms (Gillespie 2016; Seaver 2013),
and gendered software programming (Bivens 2015; D’Ignazio 2016). These are
only a few examples among a growing body of research that reflects on the blurring
of machine and human work or, more specifically, workers who labor in big data
(Gillespie 2016). According to these critics and others, what is of concern is the
pervasive invisibility that shapes the contours of what users believe possible of
mediated communications. In simpler terms, invisibility is intentional and serves
to make users complicit by surrendering their agency in two ways.

One way is that users come to understand algorithms that process large data
sets as too complex for them, the layperson, as well as offering up an objective
calculation from which to make decisions (Kitchin 2014). The second way is
that users believe big data necessarily drive algorithms. This means, for example,
surrendering to prompts that suggest, for instance, a new book or movie based
on our browsing histories, precisely the kind of counsel we would likely resist
from a random stranger making the same suggestion! In this way, we relinquish
part of the decision-making process because we believe in big data, as networked
and collective data, to be fundamentally informative and unbiased. Or perhaps
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we want it to be so, to alleviate some of our indecisions or to assure us that we
are making a good decision based on more than our own whims and desires. No
less, this is important because it also informs the context in which we perceive
data and its visual representations. And because we are largely led to believe that
data is neutral – big data as a source ripe with expansive insights if only the right
questions are asked of it – we could critique the results while forgetting to ask more
fundamental questions about its origins.

Good data visualizations become even harder to assess as good design tends
to erase its process and render invisible its guiding structures. As Anna Munster
(2009) explains, structures that dictate the organization and aggregation of data
remain largely invisible and are thought of as the imperceptible objects of data
visualization. Similarly, Stalbaum (2004) observes that “same representations might
exist in different terminal states (as either data or information) on a larger conveyor
belt of ubiquitous digital processing” (par. 11). Further yet, Alexander Galloway
(2011) argues that by developing a critical gaze onto data visualization, we come
to see that what is represented are the underlying structures and rules that produce
the data. But whose rules? While we all inadvertently generate data by daily uses
of mobile devices and web-based applications, fewer of us have the capacity to
collect and store data, and fewer still have the infrastructures and tools to interpret
it (Manovich 2012).

In short, we are not all equal in our relationship to big data or what can be
made from it. And why this matters is because those who make the rules determine
the game and come to control its players (Harding 1996). Data is never simply
inert material to be converted into knowledge – it embodies culturally specific
principles of organization and representation – it both informs and is informed by
the knowledge of a society. These tensions between organization, representation,
and information mirror debates within the broader visualization literature. We turn
now to three popular perspectives on the purpose of visualizations: to represent
(MacEachren 1995), to communicate or explain (Tufte 1997), and to tell stories
(Yau 2011).

The use of information visualization for the purposes of representation can be
seen in various forms of visuals. The use of maps is one well-known method
of representing geographic locations and their relation to one another. Time, an
abstract concept, is typically represented by clocks in the physical world, but can
be represented by a visualization as simple as line graphs or as complex as a
streamgraph. Different visualization techniques can be combined to offer other
forms of data. For example, a weather radar map combines both geographic maps
and time, with visual indicators as to the direction of wind or the movement of
precipitation. These are forms of visualization that most people know and trust.
The trouble with unethical representation usually stems from using visualization
techniques that are not appropriate for the data. Many of these can be seen in every
infographics where something like the outline of a cow is used to determine the
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percentage of people who eat beef every day, five times a week, four times a week,
three times a week, two times a week, once a week, or never. While the creative
aspect is apparent, the use of an organically shaped image makes it very difficult to
determine the correct percentages.

Another perspective proposes the goal of information visualization is to produce
an aesthetically pleasing, appropriate manner in which to communicate and explain
different kinds of data, particularly big data (Keim et al. 2013). Big data is large,
unruly, and difficult to understand. When left in its raw form, big data cannot
provide an explanation of what the information really means. Edward Tufte (1997)
justified the need to transform quantities evidence into visual designs in Visual
Explanations: Images and Quantitates, Evidence and Narrative. He explains that
creating visualizations that deceive is actually “disinformation design,” (p. 55)
where the display is nothing more than a form of magic. If one purpose of
visualization is to communicate, then misinformation essentially accomplishes the
opposite.

Another goal of information visualization is to tell a story about data that is
otherwise difficult to understand, because it is originally in the form of raw data
and numbers. The storytelling perspective may be fraught with the greatest amount
of ethical concern. This is because visualizations can easily be manipulated or
modified to tell the story that most suits the data analyst or designer. Furthermore,
this is possible even if the data is accurate or unflawed. If a conservative news
program is interested in portraying liberal politicians in a negative light (see Fox
News examples), simply truncating axes could change the entire narrative of the
data presented.

Information that is presented visually is perceived to have greater reliability
than if the information was presented alone, regardless of the integrity of the
data source. However, just as information visualization can be used to make this
considerable amount of data clearer, more manageable, or more interesting, it can
also be used to manipulate viewers. This can be accomplished, whether advertently
or inadvertently, in a variety of ways. Unintentional visualization manipulation may
more likely be due to a lack of visual or data literacy. There is a necessary level of
skill required to understand that a streamgraph is more appropriate than a pie chart,
for example.

Manipulation of users can also be achieved simply as a result of information
visualization’s nature to only portray some information, sometimes at the expense or
exclusion of other, often critical information. Information visualization can easily be
used to manipulate the message of that data, even critically examined and describe
data, because the very nature of information visualization is that it must exclude
and occlude some of the information available. In the sections that follow, we
propose activities you can use with students (or on your own) to improve their
abilities to ethically and attentively design visualizations that accomplish a variety
of representation, communication, and storytelling goals.



106 A. Mahmud et al.

Suggested Activities

So what is a good instructor to do? This section first provides a list of questions
students and instructors can use as prompts for developing data visualizations, to
account ethically and with political intent the way they communicate information.
We encourage students to reflect on these questions as a means of making their
design work more transparent and also as a tool to critically assess data visualization
more broadly. Following the questions, we address three common dimensions in
visualization and suggest activities for teaching about them: physical space, time,
and comparisons. We suggest that you use these questions to guide a discussion of
each of the exercises outlined below.

Maps

Together, the recent pushes to open government data and to make mapping software
more accessible have contributed to the rise in popularity of mapping visualizations.
Maps have an advantage of being intuitive to many people because of their
experiences driving, taking public transportation, and watching or reading national
and international news. We are used to seeing scaled down representations of
physical space, and we’re familiar with common boundaries (e.g., states) and
conventions (e.g., political party colors, “you are here” markers).

In this section, we use the Centers for Disease Control’s Community Health
Status Indicators (CHSI) to combat obesity, heart disease, and cancer1 to illustrate
how decisions about data and semiotics impact what functions map visualizations
serve. We have chosen this data because it highlights questions about narratives
and political uses of visualizations. According to the CDC, the data set is explicitly
designed for public health professionals and the public broadly, and its curation was
supported by federal funds. Each of the maps below was created in Tableau Public.2

We use the same variable – “Prim_Care_Phys_Rate,” a county-level measure of the
number of primary care physicians per 100,000 people – to determine the colors
to display in each map. The PCP rate ranges from 44 to 123 with a median of
84. Primary care helps prevent disease, and access to primary care is associated
with more equitable heath distributions (Starfield et al. 2005). States have different
policies around health insurance and primary care, especially under the Affordable
Care Act. When looking at the three maps below, think about how health policy
makers and activists might use these maps to argue for changes in health policy. At
whom are these maps aimed? How might they be misunderstood? What narratives
do they create?

1https://catalog.data.gov/dataset/community-health-status-indicators-chsi-to-combat-obesity-
heart-disease-and-cancer.
2https://public.tableau.com/s/.

https://catalog.data.gov/dataset/community-health-status-indicators-chsi-to-combat-obesity-heart-disease-and-cancer
https://catalog.data.gov/dataset/community-health-status-indicators-chsi-to-combat-obesity-heart-disease-and-cancer
https://public.tableau.com/s
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Fig. 8.1 Primary care physician rates in the USA – darker colors indicate more PCPs per 100,000
residents

In Fig. 8.1, we use a standard map of the 48 contiguous states and use a single-
color gradient to indicate the primary care physician rate in each state. As the rate
of PCPs increases, the value of the green color becomes darker. MacEachren (1995)
refers to maps like this one as “designative” (p. 247). The colors designate explicit
properties of the underlying shapes – here sequential greens indicate the rate of
PCPs in a state. Use the questions in Table 8.1 to guide a discussion that compares
these two maps.

Figure 8.2 presents the same data on the same map but using a diverging color
scheme. In this case, the color ranges from deep red to deep green, and the gradient
is centered around the median PCP rate of 84 PCPs per 100,000 residents. By using
a two-color gradient, especially red and green, the map here is an “appraisive”
(MacEachren 1995, p. 248). The red-green gradient evokes a metaphor of relative
safety where red means “danger” and green means “safe.” In doing so, the gradient
imbues this map with judgments about the states. Red implies that states are
dangerous while green implies relative safety.

Given the familiarity of maps, we are also able to adjust the ways physical
space is represented without losing the affordances of map metaphors. Regional
comparisons are still accessible, for instance, and we can still recognize how a
particular point on map corresponds to a place in space. In Fig. 8.3 we use a tile map
instead of a standard projection. In this map, each state, regardless of its geographic
size, is represented by a tile of the same size. The tiles are colored according to
the same appraisive gradient used in Fig. 8.2. The tile map also makes it easier to
include Alaska and Hawaii because the map is divorced from some of the space
constraints of a projection map. Projection views crowd out geographically small
areas such as Rhode Island and the District of Columbia. How do the functions of
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Table 8.1 Prompts for designing data visualizations

1. Data collection
(a) What kind of data are you working with?

(i) That is, numbers, correlations, timelines, equations, quotations, stories
(b) What were the motives for collecting the data?

(i) That is, research, play, software testing
(c) What is the origin or source of your data? Who or what collected the data?

(i) That is, researchers, NGOs, artists, corporations, governments, law enforcement
(d) Through what mechanism and by what method was the data initially collected?

(i) That is, insurance purposes, academic research, advertising revenue, API
2. Data analysis

(a) What are the contours of the data? What is included and what is left out? What are their
limits?
(i) That is, geography, time, gender

(b) How does a particular tool, technique, or method inform how data is collected?
(i) That is, biometric data, surveys, user-generated content, crowdsourced

(c) What are the tool, technique, or method’s orientations? How does it position, frame, or
encode the data within a particular logic or world view?

(d) How is information about the process of data collection made visible? How is it hidden?
How might absences be accounted for?

(e) At what point in the data collection process are you interjecting your analysis?
(f) How are the data analyzed? What questions are guiding the analysis? What assumptions

are embedded in those questions?
3. Data visualizations

(a) What tools (software, program, or practices) are used to generate the data visualizations?
What are the aesthetics that underlie or guide the tools? How might these shape
interpretations of the visualizations?

(b) What’s kind of narrative does the visualization create? Who is it aimed at? Is it a widely
accessible narrative?

(c) How is the data visualization framed?
(i) That is, explanatory text, link, contact information

(d) How might the visualization be understood? How might it be misunderstood?
(e) What are the potential social and political implications of the visualization?

(i) That is, surveil, represent, call to action
(f) Where will the visualization be featured? How will it be featured?
(g) Who stands to benefit from the way the data is represented?
(h) What stage(s) of a project is the visualization supporting?

4. Self-reflexive analysis
(a) Who is your design and research team comprised of? How do these factors inform the

choice of data sets, data collection, interpretation and storage?
(i) That is, ethnicity, authority, age, rank, gender

(b) Was anyone funded to collect the data? Is anyone profiting, financially or otherwise,
from the data?

(c) What assumptions and biases are embedded in the data? How might these impact the
data’s use?

(d) Who or what is subsumed by the data? Who or what is privileged by the data? What are
the possible social and political effects of these data entitlements?

(e) What can other data collectors, analysts, publishers, and users learn from your work?
(f) Does the work contribute to data ethics, equity, sovereignty, and access
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Fig. 8.2 Primary care physician rates in the USA

Fig. 8.3 Primary care physician rates in the USA using a tile map
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the tile map differ from those of the projection map? What kinds of narratives are
easier to see in a tile map? What differences does a tile map occlude?

This example of mapping PCP rates across the USA just scratches the surface
of issues visualization designers face when mapping data. Here are some additional
resources for designing mapping visualizations.

Comparisons

There are a number of situations that can benefit from or can make better sense when
there is some level of visual comparison. This type of data is generally categorical,
with very clear distinctions between those categories, offering room to compare and
contrast. Comparisons can be made in a variety of ways, but need a technique in
which to differentiate the items that are being compared. This can include the use of
one or any combination of color, symbols, patterns, and text.

There are a number of types of visualizations that are used to compare data. In a
sense, one of the purposes of information visualization is to compare data, so nearly
all forms of visualization compare something. A bar chart can be used to compare
the individual test scores of a group of students in a particular class. A line graph
may be used to compare a company’s monthly spending over a year’s time. Even a
simple pie chart can be used to compare how much of available funds and individual
spends on different expenses within his or her budget.

Take, for example, the concept of the “red state” versus the “blue state,” in
terms of designated political symbolism in the USA. Ordinary citizens can usually
recognize that this refers to a state’s tendency to vote for either Republican or
Democratic candidates, particularly in presidential elections. However, it should be
noted that colors are not universal symbols, so they can even be problematic for
use in comparison when used internationally. For instance, in the United Kingdom,
the color blue is associated with the Conservative Party, so the connection between
color and ideology breaks down.

The use of symbols represents visually differences in information. Comparisons
between males and females are also accomplished through the use of the color, but
also through the use of male and female symbols. There is also a symbol used to
indicate transgender individuals. The individual shapes of traffic signs, sometimes
without their corresponding colors or patterns, hold symbolic meaning that many
experienced drivers would easily recognize. There are even symbols that are used
internationally, such as methods of transport, including airplanes, taxi cabs, buses,
escalators, and stairs. When colors and symbols cannot be used, patterns, such as
dashed or dotted lines, stripes, polka dots, or zigzags, can be assigned to represent
data.

However, comparisons can be made using a visualization that is as simple as a
column chart and such as Fig. 8.4, a Fox News visual where comparisons are being
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Fig. 8.4 Fox News truncated y-axis

made between yearly quarters for federal welfare dollars that were distributed in
the USA. On first glance, the visualization appears harmless, if not informative, and
indicating an increase in spending on welfare. However, upon further inspection,
it becomes clear that the y-axis was truncated to result in a more exaggerated
perception of welfare increases.

But assuming that the data is correct, if the visual was modified where the y-axis
was not truncated or, at minimum, expanded to include more numbers, the graph
would look closer to the graph found in Fig. 8.5. The variations become markedly
less significant and appear to have a much smaller increase in the number of dollars
spent.

Another highly effective tactic is to choose not to label one or more of the axes
presented in a visualization. This can be problematic for many reasons, including
allowing different variables or data types to be compared at the same. In Fig. 8.6,
the lack of a y-axis provided the creator of the visual with nearly free range to
determine how it appeared. Just glancing at the visual would have a viewer believe
that that the baseball pitcher’s speed has drastically fallen between 2012 and 2013 –
nearly by half. However, closer inspection of the numbers above each column
reveals that difference in speed is only 2 miles per hour on average. Given that
the pitch described is a knuckleball, the visualization may be trying to highlight the
slowness of the 2013 velocity – slower knuckleballs are better – and so exaggerate
the difference to make Dickey look like he’s improved significantly.
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Conclusion and Additional Resources

Information visualization is a powerful approach to portraying data, particularly
big data. Without a visual story, massive quantities of data are nearly impossible
to understand, but visualization can help people form a greater understanding of
the numbers behind the pictures. However, with this powerful tool comes a great
deal of responsibility. The responsibility to visually display data is one that rests
on the shoulders of the visualization designer. However, because data scientists and
designers can assume that people generally have little data or visual literacy, some
designers have used this to their own advantage. Perhaps they have a story that needs
to be told, they have been paid to create the false story, or perhaps they are lacking
in the very form of literacy they have been tasked with demonstrating.

The types of visualizations available for use span a wide variety of information
and come in many forms. We have only been able to discuss a very small number of
these, including maps, comparisons, and temporal visualizations.

Using information visualization to lie and mislead is not a novel endeavor.
Therefore, there are many resources available to demonstrate good, as well as bad,
visualizations. The list below is a good, albeit not exhaustive, list of resources.

• MacEachren, A. M. (1995). How Maps Work: Representation, Visualization, and
Design. Guilford Press.

• Yau, N. (2011). Visualize This: The FlowingData Guide to Design, Visualization,
and Statistics. John Wiley & Sons

• http://www.informationisbeautiful.net/visualizations/what-makes-a-good-data-
visualization

• http://www.gooddata.com/blog/5-data-visualization-best-practices
• http://viz.wtf
• http://data.heapanalytics.com/how-to-lie-with-data-visualization
• http://www.visualisingdata.com/2014/04/the-fine-line-between-confusion-and-

deception

Ultimately, the goal of information visualization is to represent, communicate,
and to tell stories. Large data sets, or big data, contain meaningful information
that is not apparent to the everyday individual. The challenge, however, is to create
visualizations that do not give dishonest, misleading information, regardless of the
purpose of the visualization. Making certain that students are aware of these pitfalls
will make them better prepared to avoid making the mistakes and decisions that
result in misleading or dishonest visualizations.

Parts of this paper were written in consultation with Antonia Hernández and
Corina MacDonald of mat3rial.com. This material is based upon work supported by
the National Science Foundation under Grant No. IIS-1525662.

http://www.informationisbeautiful.net/visualizations/what-makes-a-good-data-visualization
http://www.informationisbeautiful.net/visualizations/what-makes-a-good-data-visualization
http://www.gooddata.com/blog/5-data-visualization-best-practices
http://viz.wtf
http://data.heapanalytics.com/how-to-lie-with-data-visualization
http://www.visualisingdata.com/2014/04/the-fine-line-between-confusion-and-deception
http://www.visualisingdata.com/2014/04/the-fine-line-between-confusion-and-deception
http://mat3rial.com
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Democratizing Data Science: The Community
Data Science Workshops and Classes

Benjamin Mako Hill, Dharma Dailey, Richard T. Guy, Ben Lewis,
Mika Matsuzaki, and Jonathan T. Morgan

Nearly every published discussion of data science education begins with a reflection
on an acute shortage in labor markets of professional data scientists with the skills
necessary to extract business value from burgeoning datasets created by online
communities like Facebook, Twitter, and LinkedIn. This model of data science—
professional data scientists mining online communities for the benefit of their
employers—is only one possible vision for the future of the field. What if everybody
learned the basic tools of data science? What if the users of online communities—
instead of being ignored completely or relegated to the passive roles of data
producers to be shaped and nudged—collected and analyzed data about themselves?
What if, instead, they used data to understand themselves and communicate with
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each other? What if data science was treated not as a highly specialized set of skills
but as a basic literacy in an increasingly data-driven world?

In this chapter, we describe three years of work and experimentation around a
vision of community data science that attempts to explore one set of answers to these
“what if?” questions. This work has primarily involved designing curriculum for,
and then running, five series of 4-day workshops, plus three traditional university
courses taught to masters students. We have used these workshops and classes to
explore the potential of, and challenges around, this vision of democratized data
science. We begin by framing our goals and approach in terms of similar and
analogous efforts. Next, we present our philosophy and design goals. With this
background, we describe the structure of the curriculum we have developed. Finally,
we use data from several pre-session, within-session, and post-session surveys to
discuss some of the promises and limitations of our approach.

Background

Data Science Education

There is little doubt that, driven by surging interest in the power and potential of “big
data” for business, data scientists have found themselves in high demand (Manyika
et al., 2011). Harvard Business Review has called “data scientist” the “sexiest job
in the twenty-first century” (Davenport and Patil, 2012), and several reports have
pointed to massive shortages of data scientists in labor markets. For example, in
their widely cited report published by the McKinsey Global Institute, Manyika et al.
(2011) suggested that the United States is already facing a massive shortfall of
skilled data scientists that will only be aggravated in the coming years. In 2014,
Dwoskin (2014) suggested that there were 36,000 advertised, but unfilled, positions
for data scientists in more than 6,000 firms.

In response, a whole series of education programs have been created, or
rebranded, in what West and Portenoy (2016) have described as a “data science
gold rush in higher education.” Using a dataset of more than 100 degree-granting
programs in related spaces collected by North Carolina State University’s Institute
for Advanced Analytics,1 West and Portenoy point to dozens of new programs
created in a matter of years in the United States alone.

Although there is no consensus—either in popular accounts or among data
scientists educators—on exactly what such programs should cover (Davenport
and Patil, 2012; Miller, 2013; Gellman, 2014), there is some agreement that data
scientists should be able to collect and integrate datasets and conduct analyses
using some combination of programming, statistical modeling, and data mining

1http://analytics.ncsu.edu/?page_id=4184 (https://perma.cc/6MKH-7KVY)
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techniques. Similarly, there is consensus that a critical skill for professional data
scientists is the ability to ask and answer questions of substantive interest and to be
able to clearly communicate their results (Davenport and Patil, 2012).

End User and Conversational Programmers

Although not all descriptions of data science involve social media, many of the
most widely cited accounts of the rise of data science focus on the massive growth
of datasets of online behavior from sites like Facebook, LinkedIn, Google, and Etsy
(Manyika et al., 2011; Dwoskin, 2014). The absence of any mention of users of these
websites from these discussions of data science is striking. Although left largely
implicit, the role of end users in these accounts is to produce data and, ultimately,
have their behavior shaped by the output of algorithms. Of course, as evidenced by
the quantified self-movement (Wolf, 2010; Nafus, 2016; Neff and Nafus, 2016), at
least some users of these systems are likely interested in the data created and stored
by these systems.

Data analysis is often pointed to as a classic example of end user programming—
commonly defined as the authoring of code by nonprofessional programmers
(Nardi, 1993; Jones, 1995). Intriguingly, as data science has grown into an estab-
lished professional practice itself, the potential emerges for end user data science.
Through web application programming interfaces (APIs) created to facilitate user
access to personal data from online communities, the infrastructure already exists
to provide users with structured data about themselves and their friends from many
of the most widely used social computing systems. That said, this access is almost
only ever taken advantage of through apps with preset interfaces and dashboards.
What remains missing is widespread access to the knowledge and skills to facilitate
end user data science using currently available data.

Recent research has suggested that learning to program can be understood as
a valuable tool even among users who never engage in programming. A study
by Chilana et al. (2015) showed that students from majors like management with
no intention to engage in programming of any sort expressed a strong interest
in learning to program so that they could speak effectively with programmers
they might work with. In a follow-up survey of non-programmers in a large
multinational software company, Chilana et al. (2016) found that nearly half of their
respondents (42.6%) had invested time in learning to program and that over half of
these individuals were what they called “conversational programmers” who were
interested only in improving technical conversations and their own marketability.
To the extent that it is increasingly common for nonprofessional data scientists to
encounter data scientific analyses, being exposed to the basic tools of data science
may be seen as useful for these conversational data scientists with no intent to
engage in analysis themselves.
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To extend the metaphor to programming one final time, it is worth considering
how, over the last several decades, computer science educators have explored what
curriculum might best serve the goals of teaching nonprofessional programmers.
To cite one example, Mark Guzdial and Andrea Forte have published a series of
papers that reported on, in various ways, an attempt to develop, deploy, and evaluate
curriculum teaching programming to noncomputer science majors (Guzdial, 2003;
Guzdial and Forte, 2005; Forte and Guzdial, 2005). The degree to which this type
of curriculum might differ from attempts to teach conversational programmers has
been described as an open issue by Chilana et al. (2016). We know of no attempts
to develop curriculum or explore pedagogical approaches around end user and
conversational data science.

Democratizing Data Science

To the extent that data science is powerful and provides its practitioners with
the ability to understand and affect behavior, it can be understood as politically
important to make access to these tools more widespread. Although statistics are
much less solid than they are in more established fields, there is evidence that data
scientists are overwhelmingly white and overwhelmingly male. Though women,
minorities, people with disabilities, and veterans are underrepresented in STEM
fields generally, they remain most underrepresented in the fields that data science
draws upon most strongly: computer science, math, and statistics.2

One important approach to reducing inequality in participation used in feminist
critiques of computer science is to attempt to remove systematic barriers to
participation. Margolis and Fisher (2001) famously use the metaphor of unlocking
clubhouses to describe the goal of breaking down these systematic barriers to inter-
ested women in computing communities. A second approach involves designing
new forms of participation that appeal to wider audiences. Buechley and Hill (2010)
use the metaphor of building new clubhouses to evoke the idea that computing can
be reimagined to appeal to women uninterested by computing as it is typically
framed. Buechley and Hill argue that this approach can broaden participation
in computing. Although there are almost certainly many systematic barriers to
participation in data science that affect members of underrepresented groups,
imagining data science as practiced by the large majority of people uninterested in
careers as professional data scientists is the first step on the path of “democratizing”
data science in the ways suggested by Buechley and Hill.

There have been a series of efforts to involve users of online communities in
data science. The most famous and common techniques are citizen science projects.
The citizen science model, made famous by Galaxy Zoo (Raddick et al., 2007),

2http://www.nsf.gov/statistics/2015/nsf15311/digest/nsf15311-digest.pdf (https://perma.cc/74E5-
T4YJ)
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Zooniverse (Smith et al., 2013; Simpson et al., 2014), and eBird (Sullivan et al.,
2009; Wood et al., 2011), is similar to “crowdsourcing” where participants’ role
is active and intentional but also limited to a handful of typically low-level and
repetitive tasks. In citizen science, participants act as sources of distributed labor
and human computation (Howe, 2006). Like crowdsourcing, task execution is
distributed, but the tasks of posing questions and performing analyses remain the
exclusive domain of the platform operators and the “real” scientists (Benkler, 2016).

A smaller body of work has explored the potential of involving online com-
munities in participatory data analysis where both task selection and execution
are distributed. There are a number of attempts to support data analysis through
participatory and social data visualization on the web (e.g., Heer et al., 2007; Viegas
et al., 2007; Wattenberg and Kriss, 2006; Luther et al., 2009). Although powerful,
these systems are often restricted to particular datasets provided by researchers or
to a set of predefined types of visualizations or analyses. For example, users of
these systems are often unable to create new variables in ways that are a basic
part of most data scientists’ work. Another interesting approach occurred on the
Reddit online community through an experimental research process used by Matias
(2016). In his study of a large social mobilization in Reddit, Matias discussed initial
results and worked with participants to refine models and hypotheses. Although
users were deeply involved in the process of hypothesis construction, they still relied
on an academic researcher with access to programming and statistical knowledge
and skills to carry out tests. Both social visualization systems and Matias’s work
are limited by their desire to involve users without also asking them to learn new
technical skills.

Perhaps the most clear attempt to democratize data science in the way we have
articulated is a system by Sayamindu Dasgupta (Dasgupta, 2016; Dasgupta and
Hill, 2016, 2017). Deployed in the Scratch programming community (Resnick et al.,
2009), Dasgupta’s system provides programmatic access to data about activity in the
Scratch community to each member. Dasgupta documented the way that Scratch’s
young users used the system to enthusiastically analyze their own data in ways that
were powerful, unanticipated, and empowering. Dasgupta’s system is limited both
in the analytic tools it makes available and in the depth and scope of data provided.
That said, the level of enthusiasm shown by users of the system, and the creativity
these users displayed, is deeply inspiring. Like Dasgupta, our goal is to move one
step beyond both citizen science and participatory hypothesis testing to give users
of online communities the ability to ask and answer their own questions (end user
data science) and to build the skills to engage with other analysts and analyses
(conversational data science).

Toward that end, we designed a series of workshops and courses. In designing,
teaching, and evaluating this curriculum, we were motivated by three broad
questions. First, what are the essential skills for end user and conversational data
scientists? Second, what would a curriculum teaching these skills involve? Finally,
how would one evaluate attempts to democratize data science? We describe the work
we have done in our workshops to explore potential answers to these questions over
the rest of this essay.
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Philosophy and Pedagogy

The philosophy informing our pedagogical approach is primarily influenced by
Margolis and Fisher’s (2001) seminal work on breaking down barriers to the
participation of women in computing, Lave and Wenger’s (1991) theory of legit-
imate peripheral participation, and Papert’s (1980) concept of constructionism.
From Margolis and Fisher, we draw a commitment to broadening participation
in data science. From Lave and Wenger, we draw a commitment to the idea of
authentic learning environments and the ability to learn through apprenticeship-like
relationships. From Papert, we draw the idea that knowledge can be constructed
through the creation and manipulation of knowledge in a social environment.

Broadening Participation

The first pillar of our community data science approach is the goal of broadening
participation. We seek to broaden participation along several dimensions including
not only the kinds of academic fields or professional backgrounds of participants but
also demographic characteristics including gender and race. Many other approaches
to teaching data science require existing programming or statistical experience. For
example, the Software Carpentry and Data Carpentry workshops seek to attract
participants with undergraduate-level programming experience (Wilson, 2014). We
target absolute beginners. Indeed, one central criterion for making acceptance
decisions for our workshops and classes is that applicants have no previous
programming experience. This has an additional benefit of ensuring that participants
begin with a similar skill level.

Meaningful participation in STEM requires successful negotiation of cultural,
social, and symbolic elements of STEM fields (Joshi et al., 2016). Therefore, we
strive to create an inclusive environment that considers several factors known to
influence inclusiveness in STEM. For example, signifiers of masculine tech culture
such as Star Trek posters have been shown to inhibit participation by women.
Conversely, more neutral “ambient” signifiers such as nature posters do not inhibit
anyone’s participation (Cheryan et al., 2009). Toward this end, we have intentionally
hosted all of our workshops and classes outside of the engineering buildings at
the University of Washington campus. We have made attempts to recruit and
encourage women and people of color to act as mentors, lead sessions, and give
lectures. Inclusiveness is also influenced by the kinds of examples one uses, and our
curriculum emphasizes working with data about people.

Finally, we have sought to offer our workshops at times, and at a cost, that makes
participation by diverse groups of people possible. For example, we have scheduled
our workshops on evenings and on Saturdays to make it possible for participants
with full-time jobs to attend. So far, we have been able to offer all of our workshops
at no cost to participants. Similarly, we have built our curriculum entirely around
tools, APIs, and datasets that can be installed and used for free.
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Project-Based Construction

A second pillar of our approach is a strong emphasis on project-based construction
and authenticity. Although we do not entirely eschew more traditional lecture-
based pedagogy, the bulk of our workshops and classes involves participants’
programming on their own computers. Even during lectures, all participants are
encouraged to program using their own computers by repeating the programming
constructs being demonstrated by instructors and modifying them in ways that
interest them.

The decision to have individuals program on their own computers reflects a
strong commitment to creating authentic experiences (Lave and Wenger, 1991). We
strongly believe that participants in our workshops and classes should program using
the tools that we use in our own work as end user and conversational data scientists.
When we teach individuals to use APIs, we have them create API keys and engage
directly with real APIs. Although this leads to challenges and unpredictability
around the setup related to heterogeneity of participants’ devices, it also turns data
science into something that happens directly on each participant’s computer. When
the workshops end, participants leave with all the software necessary to continue
engaging in data science.

We ensure that less than half of any session is dedicated to more traditional
lecture-based teaching. Instead, participants spend the majority of their time in the
sessions writing software and analyzing data. We encourage participants to program
and analyze data the way we do—by modifying existing code and by searching sites
like Stack Overflow for error messages, recipes, and solutions to problems. This
approach encourages people to wrestle with many of the real issues brought up by
data analysis in ways that make critical engagement a central part of the process
(Ratto, 2011). For example, when we teach about APIs, participants deal with
questions about the degree to which APIs are owned or controlled by companies.

Learning Communities

A final pillar of our approach is the idea that learning happens through collaborative
construction of knowledge in convivial social environments. In ways that are
inspired by both Lave and Wenger’s (1991) apprenticeships and Papert’s (1980)
samba schools, we attempt to maximize one-on-one interactions between beginners
and more skilled data scientists. Concretely, this involves recruiting a large number
of skilled data scientists to serve as “mentors.” We try to keep to a four-to-
one student-to-mentor ratio. Over the course of running the workshop series five
times, we have observed that the mentors who are most reliably effective at
helping learners solve their problems often come from nontraditional engineering
backgrounds. Most encouragingly, we have found that many of the most effective
mentors were originally introduced to data science through previous iterations of
the workshops and classes.
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Excellent mentors embody a warm environment by helping participants solve
the problems they are facing in ways they will be able to replicate and build upon
when they are working on their own rather than trying to teach “their way” or the
“right way” to do something. A low student-to-mentor ratio enables opportunities
for extensive one-on-one coaching. This is especially helpful for beginners since
their ability to troubleshoot a problem can be brittle and because troubleshooting
can be stressful and frustrating (Estrada and Atwood, 2012).

A sense of belonging is another factor that has been demonstrated to influence
the inclusiveness of STEM participation (e.g., Good et al., 2012). Providing lunch—
the workshops biggest expense by far—is a time-honored way to foster informal
interactions and an important component of how we help to foster social support
for participants. During lunch, participants often debrief with each other over the
morning workshop while getting to know each other and mentors. For these reasons,
we also encourage and support meet-ups and learning sessions outside of the formal
workshops and classes.

Community Data Science Workshops

In early 2014, we designed a set of 4-day workshops in Seattle, Washington, that
aimed to answer the three questions we raised in our background section while
attempting to adhere to the philosophy and pedagogy laid out above. For the initial
set of workshops, we drew both inspiration and some initial curriculum from the
Boston Python Workshops (BPW)3 and Software Carpentry4—two curricula with
which we had experience. In particular, we leveraged BPW’s detailed Python setup
instructions and introductory Python programming curriculum. Additionally, the
way we structure our daily schedule and our project-based afternoon sessions
was drawn directly from BPW. Although several of us teach at the University of
Washington, we sought to arrange these workshops as volunteers outside of a formal
classroom setting.

The initial workshops were an enormous success with 115 applicants of whom
we were able to admit 52. In response to this demand, we ran the workshops again
in late 2014, twice again in 2015, and once in early 2016. Additional workshops
are planned in Seattle, twice a year, going forward. As we have been able to recruit
more mentors, each workshop has been larger than the previous iteration. Our most
recent workshop in early 2016 was attended by 97 participants.

Each time we have run them, the workshops were organized over one Friday
evening and three Saturdays. A Friday session before the initial Saturday session
ensured all participants (and their computers) were prepared for the following
morning. The four sessions were numbered from 0 to 3 in reference to about

3http://bostonpythonworkshop.com/ (https://perma.cc/5Y36-R9FM)
4See Wilson (2014) and http://software-carpentry.org/ (https://perma.cc/23SE-BPHA)

http://bostonpythonworkshop.com/
https://perma.cc/5Y36-R9FM
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Fig. 9.1 Four photographs from the Community Data Science Workshops held in April and May
2016. The top two panels show mentors working one on one with participants. The bottom left
panel shows a breakout afternoon workshop with participants working independently on projects.
The bottom right panel shows participants during a morning lecture with mentors standing to the
side and ready to help participants when they require assistance

zero-indexing in the Python programming language. We collected feedback from
participants after each day and debriefed instructors after each session and again
after each series of workshops has concluded. Based on this process, we iterated on
the curriculum and design of the workshops each time we ran them.

Each Saturday session begins with a 2-hour interactive lecture in the morning
that builds upon the topics presented in previous sessions. Lectures introduce new
concepts and show real examples of carrying out tasks through “live coding.” A
picture of a lecture is shown in the bottom right panel of Fig. 9.1. We encourage
participants to participate in the lecture by actively programming on their own
computers. The concepts discussed in each lecture introduce participants to a
handful of tools and concepts that are then explored in the afternoon challenges.
Each afternoon session is organized around open-ended questions designed to foster
structured exploration of the morning’s concepts to help participants synthesize and
use their new skills.

Afternoon sessions involve independent project work. Participants are given an
archive of several simple programs written using only concepts that participants
were introduced to in the lectures. After a short exposition and explanation of
the sample programs by a session leader, participants are encouraged to modify,
build upon, or be inspired by these programs to solve problems of their choosing.
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Participants work on projects individually, or in groups, with help from more
experienced mentors present. This independent project work continues over 3–
4 hours. We have experimented with many different projects. In general, we have
offered participants two or three choices during each afternoon so that participants
can choose projects that align with their interests. All but the bottom right panel in
Fig. 9.1 show these project-based sessions. The top two panels both show mentors
working one on one with participants. All of our curriculum—including sample
projects, code, and recordings of lectures—are made available on our website.5

Day 0: Setup

In the first Friday session, participants walk through a checklist for installing Python
and installing a programmer’s text editor. Next, they work through a brief tutorial on
the basics of using the command line. After the participants have completed these
setup tasks, they are encouraged to work through some simple Python programming
exercises. This makes the next morning lecture easier by pre-introducing the
material covered in the Saturday lecture. The evening session is completely self-
guided and allows participants to warm up to the concepts presented at their own
pace. Mentors are on hand to provide technical assistance, help participants through
difficult programming concepts, and verify that each student has completed session
goals before they leave.

Day 1: Introduction to Programming

The first Saturday session starts with a reinforcement of how to work in the
command line, and then introduces variables, Python’s built-in data types including
integers, floating point numbers, strings, lists, and dictionaries. As a result, after
only one lecture, participants are familiar with all of Python’s first-order data
structures and all of the data types used in the rest of the workshops. Finally,
we introduce conditional logic and loops. As in all of our lectures, we do not
use slides. Instead, we demonstrate and discuss concepts while programming
example code in an interactive Python interpreter using an iterative trial-and-
error method. For example, we demonstrate strings by constructing messages from
strings and demonstrate dictionaries by mapping names to ages ({‘Mako’: 33,
‘Ben’: 24}). Throughout the lecture, mentors are distributed throughout the
room to be able to answer participants’ questions about issues they are having in
their code.

The first afternoon project session aims to support participants in engaging in
simple data analysis using Python. For example, one session we have designed

5http://wiki.communitydata.cc/CDSW (https://perma.cc/G36T-KLG8)
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begins by downloading an archive that includes code and a dataset drawn from
the US Social Security Administration on the popularity of different baby names
among US children. Projects like this allow participants to start analyzing real-
world data to ask and answer questions of their own design almost immediately.
For example, participants often begin by answering a question like “How many
times does your name show up in the dataset?” and proceed to more complicated
questions (e.g., “Which names are strict subsets of other names?”). Answering these
questions reveals common challenges in data analysis immediately. For example, the
exclusion of names given to fewer than five people of one gender leads directly to
insights about missing data, while the binary nature of gender in the dataset leads
to insights about how data collection decisions can support or suppress specific
conclusions.

Day 2: Web APIs

For the second session, we step back from Python to spend time working with web
APIs—web services that allow a program to acquire data from online communities
and social media sources. One API we rely upon in the lecture is the PlaceKitten
API, which takes a request for an image of a specified size and then returns an image
of a kitten of that size. Participants are first shown how to make API requests through
a web browser. We then show them how to make the same requests in Python.

Next, we demonstrate how to parse more complex API responses. We have often
relied on data drawn from Wikipedia about articles related to Harry Potter as an
example because there is a very large amount of data and it exhibits interesting
patterns (e.g., bursts of edits around the release of each film and book). Afternoon
sessions on the second full day involve working through and modifying simple
programs that pull data from Twitter’s API to build a tweet-gathering tool for use in
the third session, from the Yelp API to find out about local restaurants, and from the
Wikipedia API to answer questions about editing activity and article metadata.

Day 3: Data Cleanup and Analysis

The final session acts as a capstone highlighting the process of sourcing, cleaning,
and using a dataset to ask and answer a question. In the morning lecture, we walk
through a program that collects a dataset about every contribution to articles in
Wikipedia related to Harry Potter using the Wikipedia API. Using these data, we
generate a series of time series plots to answer several questions related to the way
that Wikipedia editing on Harry Potter topics has changed over time.

The afternoon projects for this session focus on the process of data analysis
and visualization. For example, we have used a pre-collected set of tweets about
earthquakes (collected using a code that was crafted, in part, by participants during
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an afternoon session on the second day) to generate time series in different resolu-
tions and identify earthquakes around the world as they appear in the dataset. Other
sessions have focused on gathering geocoded social media data and visualizing these
data on a map. By showing participants different ways of interacting with datasets
that they have gathered, we are able to contextualize the act of analyzing data and to
provide examples of the process of analyzing social media data from start to finish.

Community Data Science Classes

In response to requests from our university, three of us have developed and taught
quarter-length, for-credit, masters level courses based on the Community Data
Science Workshops. The classes were taught at two different departments at the
University of Washington: three times in the Department of Communication in
our Communication Leadership program and once in the Department of Human
Centered Design and Engineering. The courses directly incorporate most of the
workshop curriculum described above. Unlike most other data science curricula,
these classes’ central focus is an extended, self-directed project which forms most
of each student’s grade. Curriculum for these classes are made fully available on our
website.6 Courses were taught to groups of 20 and 30 students with 1 instructor and
1 teaching assistant.

Teaching this material over 10 weeks, instead of 4 days, provided us with more
opportunities to iterate on our lesson plans. The practice of sending out anonymous
feedback surveys after each class session, carried over from the workshops, helped
us adjust the pace and teaching style between sessions. However, other than the
addition of more examples of APIs (essentially, the ability to teach more than one
of the afternoon session from Day 2), we found that the additional time did not
allow us to increase the scope of the material presented. We were challenged to
address all core programming concepts thoroughly within the first few weeks of the
course so that students would feel confident deploying those concepts in their own
work while leaving them with sufficient time to select a dataset, to frame a research
question, and to gather, analyze, and report their findings. The nature of the course
work changed dramatically at roughly the halfway point: the first half of the quarter
provided a crash course in data science programming; the second half focused on
supporting students as they applied those lessons to specific datasets and research
problems. Students with no previous programming experience needed to absorb a
great deal of new knowledge within the first few weeks in order to successfully
complete their class project.

The introduction of grades substantially raised the stakes of mastering the
material, and it risked conflict with our “low stakes” approach in the workshops.

6e.g., https://wiki.communitydata.cc/CDSW#Courses (https://perma.cc/UQ42-ZF9B)
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Homework assignments were graded on effort, not code quality. Each course
culminated in a final project where success depended more on gathering and
synthesizing data to tell a story than on the quality of the code written along the
way. As an example, a student would receive full credit for an inefficient program
or a program with a few missing edge cases but would lose credit for failing to
identify a potential source of error like incomplete data. In one rendition of the
class, data visualization was worth 25% of the project grade. Points were awarded if
a plot represented the data correctly by using sensible color schemes and axes, not
based on the students’ choice or mastery of plotting technology (Excel was most
commonly used).

Instructors teaching the courses did not always experience the same challenges.
One course instructor felt that the move to a traditional classroom setting, which
meant dramatically increasing the ratio of students to available mentors, reduced
opportunities for ad hoc, one-on-one support. He attempted to compensate for this
by building opportunities for peer support into the class and by grouping students
with little or no previous programming experience with others who had some
familiarity with programming in other contexts and languages. Another instructor
found that the shift to more hours in class meant he could spend more time on
average with each student.

There was consensus that while it was not possible to cover substantially more
material in 10 weeks than in 3 weekends, it was possible to cover it more thoroughly.
The higher student-to-mentor ratio made it more difficult to support struggling
students, but the addition of assignments, feedback surveys, a more drawn out
schedule, and self-directed projects helped assure that students had the opportunity
to master the material. Students were also exposed to some new challenges, chiefly
the challenge of finding data relevant to their subject of interest.

Outcomes

As we have developed the workshops and classes, we have devoted time to a
discussion of our own goals. Although the organizers share a goal of “democratizing
data science,” this is an amorphous goal understood differently even within the
team that developed the curricula. Through discussion, we established that there
were several dimensions on which we feel our efforts should be evaluated. First,
we believe that our approach should be evaluated in terms of its ability to
support skill development among participants. In this first sense, we consider our
approach effective only if participants are building skills associated with end user
or conversational data science.

Second, given our goals of democratization, we believe that it is important
that the curriculum be a successful form of outreach in that it should attract
large numbers of individuals, especially from groups that are underrepresented in
more traditional data science communities. Third and finally, we believe a success
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criterion for our approach is its ability to support empowerment. In this final sense,
we believe that it is not enough that learners simply have skills but that they feel
able to build on these skills in ways that shift power.

Skill Development

The informal nature of our workshops makes it difficult to systematically ascertain
the degree to which participants have learned skills. Some evidence of skill
development comes from the opt-in surveys we have run after our sessions. In one
typical response to an open-ended question about outcomes, a participant explained
that the sessions helped build skills around programming and data analysis:

It helped me become more comfortable with reading and writing code and taught me how to
think more about how to use social media data to answer questions that are not necessarily
academic. It also made me more confident to take the lead as the person responsible for
writing code in a class project.

Although it is certainly the case that not every participant felt comfortable writing a
code at the end of the four sessions, many explained that they felt more comfortable
in a role of end user or conversational data scientists. For example, one explained
that:

Before the workshop I had no idea what Python can do, what API is for, or what data
visualization is. The workshop basically was my entry point to the world of data analysis.

Another participant’s feedback is an example of someone who became a more
effective and confident conversational data scientist through their experience in the
workshops:

In my work as a librarian where I help clients navigate various sources of information, I feel
more comfortable talking about how they can use programming to find or analyze the data
they have access to.

In the classes where students each worked on projects over several weeks, more
concrete evidence of skill development included the products they were able to
create at the end of the class. For example, one student published a detailed report
that attempted to understand the relationship between the release of television shows
on Netflix and activity on associated Wikipedia articles. The student collected
and compared a dataset of Wikipedia editing activity on articles associated with
television shows released on Netflix with a similar dataset about broadcast television
shows. Using these data, she provided evidence of a strong correlation between
episode release dates and editing activity on Wikipedia.7 There was also evidence

7The student, Nyssa Achtyes, published her analysis on a website titled Long Term User
Engagement of Netflix and Non-Netflix shows: https://nyssadatascience.wordpress.com/ (https://
perma.cc/Z9HK-ZVA3)

https://nyssadatascience.wordpress.com/
https://perma.cc/Z9HK-ZVA3
https://perma.cc/Z9HK-ZVA3
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Fig. 9.2 Numbers of admitted participants at each workshop by inferred gender

of skill development among the academics who attended the workshops. At least one
participant emailed us to say that they used skills developed in the class to collect
and analyze data from the Twitter API that ultimately led to a published paper.

Outreach

The workshops have consistently attracted a large number of participants. Over the
5 series, 686 people applied to the workshops in Seattle, and 403 were accepted
(see Fig. 9.2). In each case, we were constrained by the size of the instructional
spaces we had access to and the number of mentors we had been able to recruit. Our
curriculum has been adapted and taught outside of Seattle as well. For example, a
group at the University of Waterloo’s Women in Computer Science group has at
least twice taught a series of workshops that relies heavily on our curriculum.

One of the most striking aspects of our workshops, so far, has been that our
participants seem to come from more diverse backgrounds than in typical data
science communities. For example, in every workshop and class, participants have
been mostly women. This surprised us since we did not make targeted efforts to
include (or exclude) a particular gender. To quantify the gender of participants,
we analyzed the first names of the participants using the US Census and Social
Security data to assign a probable gender to each name. Results are shown in
Fig. 9.2 that show that a majority of both applicants and participants were female
for each of the five sessions. There was also a fairly high proportion of women
among our mentors—especially in later sessions when most mentors were returning
participants.
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We saw diversity along other dimensions as well. Because we targeted pro-
gramming neophytes, a large portion of our attendees came from traditionally less
technical departments within our university and from outside the university as well.
For example, we attracted participants working for both local government and a
large number of local nonprofits. The workshops were also attended by social
media users including bloggers and participants in Wikipedia who were interested
in building the skills to analyze data from their own communities.

Empowerment

Perhaps the most important—but difficult to measure—determination of whether
our curricula have contributed to the democratization of data science is the degree
to which participants felt empowered afterward. Although skill development might
include the ability to understand or conduct data analysis, we feel that empowerment
goes one step further and suggest that skills can affect and change the power
structure in which participants find themselves—at least in relation to data and
data analysis. Although empowerment is difficult to measure, opt-in post-workshop
surveys of participants suggested that at least some participants felt that exposure to
data science was empowering. For example, one former student told us:

It [ultimately] gave me the confidence to accept a job teaching CS at a local CC, which led
to me applying to the CS PhD program at [the University of Washington] (and getting in!).
So, I guess it contributed to completely changing my life.

Another student reported a similar sense in which the program had led to a shift
from a career in administration to one in software engineering:

Well, I went to Hackbright Academy largely because its curriculum centers on Python. And
now I’m a software engineer in San Francisco. So: : : pretty rad, huh?

One thing we encourage participants to do is to return to future workshops as
mentors. Many participants, including two of the current organizers, have returned
to become new mentors. This is both a good opportunity for the participants to
continue engaging in data science and a sign of empowerment. In our most recent
workshops, a majority of mentors were former participants.

Participants often did not continue to engage in data science after the workshop
when they felt they did not have projects where they could use and improve
their knowledge and skills. Participants who continued to engage in data science
often had specific projects or pursued resources like Coursera, CodeAcademy,
Data Science Dojo, and classes at the University of Washington. In terms of
empowerment, assisting participants at this transitional stage—from the workshop
to real-world settings—should be considered an integral part of any community data
science curriculum and reflects an area we hope to focus on in future curriculum
development.
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Limitations

We believe that the community data science approach can benefit participants who
seek to gain a working knowledge of programming and data science literacy. The
first and most fundamental limitation is that we are trying to cover both data literacy
and introductory programming simultaneously. Even individuals who are relatively
comfortable exploring, aggregating, and describing data using software tools like
spreadsheets often struggle to perform familiar, basic data manipulations using
Python. Currently, our workshops and courses emphasize programming, but it is
unclear that we have the right mix. We could certainly defer more programming
concepts, or exclude them altogether, in favor of teaching participants how to use
widely available software tools that accomplish the same task.

We could also choose to cover additional programming concepts, such as object
orientation, that are useful for working with many common data science libraries.
Of course, these decisions—to skip over a basic programming concept or to teach
participants a non-programming alternative—would impose new constraints on
what we can cover within the workshop as well as what participants will be able
to accomplish afterward.

Furthermore, it is not yet clear to us what measures of success we should use to
evaluate our approach. Participants seek out our workshops for a variety of reasons,
arriving with vastly different types of experience. Some have more practical,
immediate, opportunities to continue honing skills than others. Ultimately, success
for any individual participant might be best evaluated based on that individual’s
goals and preparation as well as what they did with what they learned afterward
than on direct measures of their performance or engagement during the sessions.

Conclusion

In their highly cited critique around the discourse of big data, danah boyd and Kate
Crawford argue that limited access to big data analytic tools is creating new digital
divides. The world, they suggest, is divided into the “Big Data rich” and the “Big
Data poor” (boyd and Crawford, 2012). The issues boyd and Crawford raise about
access to data are formidable and substantive. We see the community data model
as one of very few attempts to address these issues directly. However, by framing
big data equity as simply an access issue, boyd and Crawford may understate
the problem. In ways that Dasgupta and Hill (2017) have shown, nonprofessional
data scientists do not ask the same questions that professional data scientists ask.
Democratized data science is not only a broader distribution of knowledge, skills,
and power, it has the potential to support the development of new types of data
science.
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We believe that what we have developed in our workshops and classes is a proof
of concept. That said, we feel confident in our demonstration that there is a broad
demand for data science skills outside of traditional engineering circles and among
groups, like women, that the fields most closely associated with data science have
historically struggled to engage. We hope that we have also provided one vision of
what a democratized data science curriculum might look like. A more democratized
data science is possible—potentially even with broad societal effects. We encourage
you to join us in the process of understanding what it might look like and what it
might be able to accomplish.

Acknowledgements The Community Data Science workshops were made possible through the
generous actions of dozens mentors who volunteered to spend their weekends teaching strangers
data science. Without them, nothing we’ve described here would have been possible. Our work
was also supported by the Department of Communication at the University of Washington which
provided physical facilities and other resources. Finally, this work was supported by a Data Science
Environments project award from the Gordon and Betty Moore Foundation (Award #2013-10-
29) and the Alfred P. Sloan Foundation (Award #3835) to the University of Washington eScience
Institute. eScience supports data-driven discovery at the University of Washington in many ways
and provided financial and other forms of support for the workshops and for this chapter.

References

Benkler, Y. (2016). Peer production and cooperation. In J. M. Bauer & M. Latzer (Eds.), Handbook
on the economics of the internet. Cheltenham, UK: Edward Elgar.

boyd, d., & Crawford, K. (2012). Critical questions for big data. Information, Communication &
Society, 15(5), 662–679. doi:10.1080/1369118X.2012.678878

Buechley, L., & Hill, B. M. (2010). LilyPad in the wild: How hardware’s long tail is supporting
new engineering and design communities. In Proceedings of the 8th ACM Conference
on Designing Interactive Systems (DIS’10) (pp. 199–207). New York, NY: ACM Press.
doi:10.1145/1858171.1858206

Cheryan, S., Plaut, V. C., Davies, P. G., & Steele, C. M. (2009). Ambient belonging: How
stereotypical cues impact gender participation in computer science. Journal of Personality and
Social Psychology, 97(6), 1045–1060. doi:10.1037/a0016239

Chilana, P. K., Alcock, C., Dembla, S., Ho, A., Hurst, A., Armstrong, B., & Guo, P. J. (2015). Per-
ceptions of non-CS majors in intro programming: The rise of the conversational programmer. In
Proceedings of the 2015 IEEE Symposium on Visual Languages and Human-Centric Comput-
ing (VL/HCC) (pp. 251–259). Piscataway, NJ: IEEE Press. doi:10.1109/VLHCC.2015.7357224

Chilana, P. K., Singh, R., & Guo, P. J. (2016). Understanding conversational programmers:
A perspective from the software industry. In Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems (CHI’16) (pp. 1462–1472). New York, NY: ACM Press.
doi:10.1145/2858036.2858323

Dasgupta, S. (2016). Children as data scientists: Explorations in creating, thinking, and learning.
Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge, MA.

Dasgupta, S., & Hill, B. M. (2016). Learning with data: Designing for community introspection
and exploration. In Workshop on Human-Centered Data Science. Position Paper. Computer
supported cooperative work and social computing, San Francisco, CA.

http://dx.doi.org/10.1080/1369118X.2012.678878
http://dx.doi.org/10.1145/1858171.1858206
http://dx.doi.org/10.1037/a0016239
http://dx.doi.org/10.1109/VLHCC.2015.7357224
http://dx.doi.org/10.1145/2858036.2858323


9 Democratizing Data Science: The Community Data Science Workshops and Classes 133

Dasgupta, S., & Hill, B. M. (2017). Scratch community blocks: Supporting children as data
scientists. In Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems (CHI’17). New York, NY: ACM Press. doi:10.1145/3025453.3025847

Davenport, T. H., & Patil, D. J. (2012). Data scientist: The sexiest job of the 21st century.
Harvard Business Review. Retrieved from 11 July 2016. https://hbr.org/2012/10/data-scientist-
the-sexiest-job-of-the-21st-century

Dwoskin, E. (2014). Big data’s high-priests of algorithms; ‘Data scientists’ meld statis-
tics and software for find lucrative high-tech jobs. Wall Street Journal (Online): Tech.
Retrieved from 11 July 2016. http://search.proquest.com/newsstand/docview/1552020409/
abstract/D70B27FC5DA74D5APQ/1

Estrada, T., & Atwood, S. A. (2012). Factors that affect student frustration level in introductory
laboratory experiences. 2012 ASEE Annual Conference & Exposition. American Society for
Engineering Education, 25.629.1–25.629.7. Retrieved from https://peer.asee.org/21386

Forte, A., & Guzdial, M. (2005). Motivation and nonmajors in computer science: Identifying
discrete audiences for introductory courses. IEEE Transactions on Education, 48(2), 248–253.
doi:10.1109/TE.2004.842924

Gellman, L. (2014). Business education: Big data gets master treatment-some business schools
offer one-year analytics programs, catering to shift in students’ ambitions. Wall Street Journal,
B.7. Retrieved from 11 July 2016. http://search.proquest.com/newsstand/docview/1620527411/
abstract/B21739238EE74F26PQ/1

Good, C., Rattan, A., & Dweck, C. S. (2012). Why do women opt out? Sense of belonging and
women’s representation in mathematics. Journal of Personality and Social Psychology, 102(4),
700–717. doi:10.1037/a0026659

Guzdial, M. (2003). A media computation course for non-majors. In Proceedings of the 8th Annual
Conference on Innovation and Technology in Computer Science Education (ITiCSE ’03) (pp.
104–108). New York, NY: ACM Press. doi:10.1145/961511.961542

Guzdial, M., & Forte, A. (2005). Design process for a non-majors computing course. In Proceed-
ings of the 36th SIGCSE Technical Symposium on Computer Science Education (SIGCSE ’05)
(pp. 361–365). New York, NY: ACM Press. doi:10.1145/1047344.1047468

Heer, J., Viégas, F. B., & Wattenberg, M. (2007). Voyagers and voyeurs: Supporting asynchronous
collaborative information visualization. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’07) (pp. 1029–1038). New York, NY: ACM Press.
doi:10.1145/1240624.1240781

Howe, J. (2006). The rise of crowdsourcing. Wired Magazine, 14(6), 1–4.
Jones, C. (1995). End user programming. Computer, 28(9), 68–70. doi:10.1109/2.410158
Joshi, K. D., Kvasny, L., Unnikrishnan, P., & Trauth, E. (2016). How do black men succeed

in IT careers? The effects of capital. In Proceedings of the 2016 49th Hawaii International
Conference on System Sciences (HICSS) (pp. 4729–4738). Piscataway, NJ: IEEE Computer
Society Press. doi:10.1109/HICSS.2016.586

Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge,
UK: Cambridge University Press.

Luther, K., Counts, S., Stecher, K. B., Hoff, A., & Johns, P. (2009). Pathfinder: An online
collaboration environment for citizen scientists. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’09) (pp. 239–248). New York, NY: ACM Press.
doi:10.1145/1518701.1518741

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011).
Big data: The next frontier for innovation, competition, and productivity. McKinsey Global
Institute. Retrieved from 11 July 2016. http://www.mckinsey.com/business-functions/business-
technology/our-insights/big-data-the-next-frontier-for-innovation

Margolis, J., & Fisher, A. (2001). Unlocking the clubhouse: Women in computing. Cambridge,
MA: The MIT Press.

http://dx.doi.org/10.1145/3025453.3025847
https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
http://search.proquest.com/newsstand/docview/1552020409/abstract/D70B27FC5DA74D5APQ/1
http://search.proquest.com/newsstand/docview/1552020409/abstract/D70B27FC5DA74D5APQ/1
https://peer.asee.org/21386
http://dx.doi.org/10.1109/TE.2004.842924
http://search.proquest.com/newsstand/docview/1620527411/abstract/B21739238EE74F26PQ/1
http://search.proquest.com/newsstand/docview/1620527411/abstract/B21739238EE74F26PQ/1
http://dx.doi.org/10.1037/a0026659
http://dx.doi.org/10.1145/961511.961542
http://dx.doi.org/10.1145/1047344.1047468
http://dx.doi.org/10.1145/1240624.1240781
http://dx.doi.org/10.1109/2.410158
http://dx.doi.org/10.1109/HICSS.2016.586
http://dx.doi.org/10.1145/1518701.1518741
http://www.mckinsey.com/business-functions/business-technology/our-insights/big-data-the-next-frontier-for-innovation
http://www.mckinsey.com/business-functions/business-technology/our-insights/big-data-the-next-frontier-for-innovation


134 B.M. Hill et al.

Matias, J. N. (2016). Going dark: Social factors in collective action against platform oper-
ators in the Reddit blackout. In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (CHI ’16) (pp. 1138–1151). New York, NY: ACM Press.
doi:10.1145/2858036.2858391

Miller, C. C. (2013, April 14). The numbers of our lives. New York Times: ED, ED.18.
Retrieved from 11 July 2016. http://search.proquest.com/newsstand/docview/1326574891/
abstract/88A4A39B52A94D3BPQ/2

Nafus, D. (Ed.) (2016). Quantified: Biosensing technologies in everyday life. Cambridge, MA:
MIT Press.

Nardi, B. A. (1993). A small matter of programming: Perspectives on end user computing.
Cambridge, MA: MIT Press.

Neff, G., & Nafus, D. (2016). Self-tracking. Cambridge, MA: MIT Press.
Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic

Books.
Papert, S. (1987). Computer criticism vs. technocentric thinking. Educational Researcher, 16(1),

22–30. doi:10.2307/1174251.JSTOR:1174251
Raddick, J., Lintott, C. J., Schawinski, K., Thomas, D., Nichol, R. C., Andreescu, D., . . . Slosar,

A., et al. (2007). Galaxy Zoo: An experiment in public science participation. Bulletin of the
American Astronomical Society, 38, 892.

Ratto, M. (2011). Critical making: Conceptual and material studies in technology and social life.
The Information Society, 27(4), 252–260. doi:10.1080/01972243.2011.583819

Resnick, M., Silverman, B., Kafai, Y., Maloney, J., Monroy-Hernández, A., Rusk, N., . . . Silver,
J. (2009). Scratch: Programming for all. Communications of the ACM, 52(11), 60.
doi:10.1145/1592761.1592779

Simpson, R., Page, K. R., & De Roure, D. (2014). Zooniverse: Observing the world’s
largest citizen science platform. In Proceedings of the 23rd International Conference on
World Wide Web (WWW ’14 Companion) (pp. 1049–1054). New York, NY: ACM Press.
doi:10.1145/2567948.2579215

Smith, A. M., Lynn, S., & Lintott, C. J. (2013). An introduction to the Zooniverse. In First AAAI
Conference on Human Computation and Crowdsourcing (HCOMP ’2013). Palo Alto, CA:
AAAI Press.

Sullivan, B. L., Wood, C. L., Iliff, M. J., Bonney, R. E., Fink, D., & Kelling, S. (2009). eBird:
A citizen-based bird observation network in the biological sciences. Biological Conservation,
142(10), 2282–2292. doi:10.1016/j.biocon.2009.05.006

Viegas, F. B., Wattenberg, M., van Ham, F., Kriss, J., & McKeon, M. (2007). ManyEyes: A site
for visualization at Internet scale. IEEE Transactions on Visualization and Computer Graphics,
13(6), 1121–1128. doi:10.1109/TVCG.2007.70577

Wattenberg, M., & Kriss, J. (2006). Designing for social data analysis. IEEE Transactions on
Visualization and Computer Graphics, 12(4), 549–557. doi:10.1109/TVCG.2006.65

West, J., & Portenoy, J. (2016). The data gold rush in higher education. In C. Sugimoto, H. R.
Ekbia, & M. Mattioli (Eds.), Big Data is Not a Monolith. Information Policy. Cambridge, MA:
MIT Press.

Wilson, G. (2014). Software carpentry: Lessons learned. F1000Research.
doi:10.12688/f1000research.3-62.v1

Wolf, G. (2010). The data-driven life. The New York Times. Retrieved 2016, August 12 from http://
www.nytimes.com/2010/05/02/magazine/02self-measurement-t.html

Wood, C., Sullivan, B., Iliff, M., Fink, D., & Kelling, S. (2011). eBird: Engaging birders in science
and conservation. PLOS Biology, 9(12), e1001220. doi:10.1371/journal.pbio.1001220

Benjamin Mako Hill is a data scientist who studies study collective action in online communities.
He is an Assistant Professor of Communication at the University of Washington, a Faculty
Associate at the Berkman Klein Center for Internet and Society at Harvard University, and a
participant in Wikipedia and a number of other peer production communities.

http://dx.doi.org/10.1145/2858036.2858391
http://search.proquest.com/newsstand/docview/1326574891/abstract/88A4A39B52A94D3BPQ/ 2
http://search.proquest.com/newsstand/docview/1326574891/abstract/88A4A39B52A94D3BPQ/ 2
http://dx.doi.org/10.2307/1174251.JSTOR:1174251
http://dx.doi.org/10.1080/01972243.2011.583819
http://dx.doi.org/10.1145/1592761.1592779
http://dx.doi.org/10.1145/2567948.2579215
http://dx.doi.org/10.1016/j.biocon.2009.05.006
http://dx.doi.org/10.1109/TVCG.2007.70577
http://dx.doi.org/10.1109/TVCG.2006.65
http://dx.doi.org/10.12688/f1000research.3-62.v1
http://www.nytimes.com/2010/05/02/magazine/ 02self-measurement-t.html
http://www.nytimes.com/2010/05/02/magazine/ 02self-measurement-t.html
http://dx.doi.org/10.1371/journal.pbio.1001220


9 Democratizing Data Science: The Community Data Science Workshops and Classes 135

Dharma Dailey studies how people get information during crises. She attended the first Commu-
nity Data Science Workshop as a student and put what she learned into her research! She found the
workshop so helpful, she stuck around to help organize more of them. She is a PhD Candidate in
Human-Centered Design and Engineering at the University of Washington.

Richard T. Guy is a Data Scientist at Microsoft where he works on large scale experimentation.
He enjoys teaching programming and data science wherever they will let him.

Ben Lewis is a software engineer who advocates for community involvement in decision making,
and seeks to expand access to tools for understanding and shaping the world. He is a graduate
of McGill University, an occasional contributor to open source projects, and a participant in
Wikipedia.

Mika Matsuzaki is an epidemiologist at the University of Washington studying substance use and
social support among marginalized populations.

Jonathan T. Morgan is a Senior Design Researcher at the Wikimedia Foundation. He has a PhD
from the University of Washington in the Department of Human Centered Design & Engineering.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.



Index

A
Agile management approach, 17–18
Apache projects, 86, 88, 96
Application programming interfaces (APIs),

93, 119, 127

B
Behavioral data, 24
Big data collaborations, 4

accessibility, 16–17
challenges, 11–12

concept and variable construction,
14–16

epistemological incompatibilities,
13–14

expertise and identity, 13
technical and theoretical skill

differences, 12–13
ethics, 10
flexibility

agile management, 17–18
flexibility, 18
trust, 18–19

Mil2.0 project, 11
open data, 9
POSM, 11

Bitcoin project, 85, 87, 94
Black Duck Software, 84
Boston Python Workshops (BPW), 124

C
Centers for Disease Control (CDC), 106
COCOMO model project, 85

Collaborative data analysis, 68
Collaborative development environment

(CDE), 80–81
Collaborative online organizations, 67
Collaborative social media analytic tasks, 68
Collective intelligence, 69
Community data science, 5–6, 133–134

classes, 128–129
data science education, 118–119
end user and conversational programmers,

119–120
limitations, 133
outcomes, 129–130

empowerment, 132
outreach, 131–132
skill development, 130–131

philosophy and pedagogy
broadening participation, 122
learning communities, 123–124
project-based construction, 123

Python programming curriculum
BPW, 124
conditional logic and loops, 126
data analysis, 127
data cleanup and analysis, 127–128
independent project work, 125
iterative trial-and-error method, 126
mentors, 125
participants, 125
setup tasks, 126
web APIs, 127

Community Health Status Indicators (CHSI),
106

Computer-Supported Cooperative Work
(CSCW) workshop, 15, 16

© Springer International Publishing AG 2017
S.A. Matei et al. (eds.), Big Data Factories, Computational Social Sciences,
https://doi.org/10.1007/978-3-319-59186-5

137

https://doi.org/10.1007/978-3-319-59186-5


138 Index

Content analysis, 43
Conversational data science, 119–121
Conversational programmers, 119–120
Crowdsourcing, 24, 121

D
Data ethics, 10
Data factories and open innovations, 4–5, 51

big data, definition of, 52–54
data, definition of, 52
e-research, definition of, 54
standardization, 52
XSEDE (see Extreme Science and

Engineering Discovery Environment
(XSEDE))

Data mining, 10
Data science democratization, see Community

data science
Data science education, 118–119
Data sharing, 10, 18, 48
Data visualization, 5, 103, 104, 107, 108,

129
DCC curation lifecycle model, 30–32
Description of a project (DOAP), 86

E
Earth sciences, 40–41
Egalitarian, social order, 68, 70
Electronic maps, 101
End user data science, 119–121
End user programming, 119
Entity relationship diagram (ERD), 90
Entropy, social order, 69–70
E-research, 54
Ethics, big data collaborations, 10
Extreme Science and Engineering Discovery

Environment (XSEDE), 62–64
efficiency and productivity, 56
funding, 55
goal of, 55
OSS adoption, data factories and open

innovations
adaptability, 62
community driven, 59–60
community needs, 57
compatibility, 61–62
observability, 60
organized access, 57–58
relative advantage, 60–61
simplicity, 61

trialability, 58
well documented, 59

partner institutions, 55
pro-innovation diffusion, 56
purpose of, 56
support to researchers, 55–56

F
Facebook (FB), 15
Feminism, 14, 15
FLOSS, see Free/libre open source software

(FLOSS)
FLOSSmole project

challenges
analyses of, 96
data availability and integration, 92–94
data usability, 96
data validity, 94–95
sustainability, 96–97

communication archives and social media,
86–88

communication media, 97
data model and availability, 89–91
directory metadata, 84–85
forge metadata

data collection, 81–82
forge hosting features, 82
forge policies, 82
GHTorrent service, 84
project artifacts, 82–83
project metadata, 83
revision control, 83

individual project website metadata, 85–86
OCDX initiative, 27
researchers, 91–92

Free and open source software (FOSS), 25
Free/libre open source software (FLOSS), 5

academic research, 79
communication archives, 87
ecosystem, 79
FLOSSmole project (see FLOSSmole

project)
software forges, 81
teams, 81

Free Software Foundation (FSF) Directory, 84,
85

Freshmeat.net/Freecode, 84, 85

G
GenBank, 24, 34
Gender, 14–16



Index 139

GitHub, 1, 27, 34, 81, 92, 93
GNU Savannah, 81, 83
Google Code, 81

H
High-performance computing (HPC), 54
High-throughput computing (HTC), 54
Human behaviors, 1, 4, 24
Human computer interaction (HCI), 25

I
Infographics, 104
Information visualization, 5

communicating information, 102
comparisons

Fox News truncated y-axis, 110–111
lack of y-axis, 111, 112
symbols, use of, 110
welfare data, modified visualization of,

111, 112
data learning, 103
decision-making process, 103
disinformation design, 105
electronic and satellite based maps, 101
infographics, 104
maps

appraisive gradient, 107
designing data visualizations, 107, 108
equitable heath distributions, 106
primary care physician rates, 106–107,

109, 110
projection map, 107

medical illustrations, 102
misleading/dishonest visualizations, 101,

113
pervasive invisibility, 103
resources, 113
unethical representation, 104
unintentional visualization manipulation,

105
visual representations, 103, 104
weather radar map, 104

Innovations for adoption, see Extreme
Science and Engineering Discovery
Environment (XSEDE)

Integrated development environment (IDE),
80–81

Internet, 24, 67, 81

K
Knowledge creation process, 72, 73

L
Launchpad, 81, 83
Learning communities, 123–124
Linux Kernel Mailing List (LKML), 86, 96, 97
Linux project, 85

M
Maps

appraisive gradient, 107
designing data visualizations, 107, 108
equitable heath distributions, 106
primary care physician rates, 106–107, 109,

110
projection map, 107

Metadata workflow model, 30–32
Microsoft CodePlex, 81
Militarization 2.0 (Mil2.0) project, 11, 14–15

N
(Neg)entropy, social order, 70–71
Netflix, 130

O
Online collaboration, 68–69
Online human interaction, 24
Online social networks, 24
Open Community Data Exchange (OCDX), 4,

29, 34–35
condensed form, 32–33
DCC curation lifecycle model, 30–32
deep-dive cases, 27–28
engaged scholarship and localized methods,

26, 27
infrastructure implementation, 27
manifest and datasets, relationship between,

25, 26
metadata workflow model, 30–32
outreach and sustainability, 28
science of science research, 28–29
tooling, 33–34

Open Hub, 84–85
Open innovations, see Data factories and open

innovations



140 Index

Open online communities (OOCs), 23–24,
34–35

behavioral data, 24
multidisciplinary social computing, 25
OCDX metadata specification and

infrastructure, 29
condensed form, 32–33
DCC curation lifecycle model, 30–32
deep-dive cases, 27–28
engaged scholarship and localized

methods, 26, 27
infrastructure implementation, 27
manifest and datasets, relationship

between, 25, 26
metadata workflow model, 30–32
outreach and sustainability, 28
science of science research, 28–29
tooling, 33–34

online human interaction, 24
Open source software (OSS), 4–5, 52, 69

adaptability, 62
community driven, 59–60
community needs, 57
compatibility, 61–62
observability, 60
organized access, 57–58
relative advantage, 60–61
simplicity, 61
trialability, 58
well documented, 59

Openstack, 87, 97

P
Pastebin, 93
Politicians and Social Media (POSM), 11
Primary care physician (PCP) rates, 106–107,

109, 110
Privacy, 10
Projection map, 107
Project management committees (PMCs), 86
Python programming curriculum

BPW, 124
conditional logic and loops, 126
data analysis, 127
data cleanup and analysis, 127–128
independent project work, 125
iterative trial-and-error method, 126
mentors, 125
participants, 125
setup tasks, 126
web APIs, 127

R
Reddit online community, 121
RubyForge, 81, 83, 97

S
Science gateways, 61
Scientific Collaboration on the Internet, 11
Scratch programming community, 121
Secondary data analysis, 2
Semantic Web technologies, 92
Slack, 88, 93, 94
Social and behavioural research and trace data,

4, 39
coding schemes, 43
content analysis, 43
data collection, 44
data processing, 45–47
data sharing, 48
earth observation data, 40–41
open source development data, 42, 43
twitter data, 41–42

Social computing, 25
Social entropy, 69–70
Social media, 6

gender, 14–16
militarization, gender, 11, 15
POSM, 11

Social order, 5, 67, 74
collaborative data analysis, 68
collaborative online organizations, 67
egalitarian, 68, 70
group characterization, 73
intersubjective realities, 68
(neg)entropy, 70–71
online collaboration, 68–69
online social processes, 69
plural subjectivities, 68
social embeddedness, 71–73
social entropy, 69–70
social structure, measures of, 68

Software Package Data Exchange (SPDX), 30,
32

SourceForge, 79, 81, 83–84, 91, 92, 94, 95
Stack Exchange sites, 93
Standardization, data factory, 52

T
Teaching methods, see Information

visualization
Tile map, 107, 109, 110



Index 141

Trust, 18–19
Twitter, 11, 41–42, 44

V
Visible Effort wiki visualization tool, 70–71

W
Weather radar map, 104

Wikimedia, 27
Wikipedia, 67, 69, 72, 73, 130
Wikispaces, 72
WordPress, 88, 94

X
XSEDE, see Extreme Science and Engineering

Discovery Environment (XSEDE)


	Contents
	1 Introduction
	Part I Theoretical Principles and Approaches to Data Factories
	2 Accessibility and Flexibility: Two Organizing Principles for Big Data Collaboration
	Introduction
	A Short Note on Ethics in Big Data Collaboration
	Overview of Projects from Which We're Drawing
	Challenges in Big Data Collaboration
	Differing Technical and Theoretical Skills
	Expertise and Identity
	Competing Epistemologies
	Concept and Variable Construction

	Organizing Principles for Productive Big Data Collaboration
	Accessibility
	Flexibility

	Conclusion
	References

	3 The Open Community Data Exchange: Advancing Data Sharing and Discovery in Open Online Community Science
	Introduction
	The Particular Challenge of Multidisciplinary Research

	Open Community Data Exchange
	Research Approach
	Expected Outcomes
	A Manifest for OOC Data
	Building on the Data Curation Lifecycle Model
	Building on Open Source Metadata Specifications

	Tooling and Infrastructure

	Conclusion and Future Work
	References


	Part II Theoretical Principles and Ideas for Designing and Deploying Data Factory Approaches
	4 Levels of Trace Data for Social and Behavioural Science Research
	Introduction
	Framework: From Trace to Variable
	Levels of Data in the Earth Sciences
	Example: From Tweet to Variable

	Discussion: Moving Up the Levels
	Collecting Level 0 Data
	Data Processing from Level 0 to 1
	Data Processing from Level 1 to 2
	Data Processing from Level 2 to 3
	Data Processing from Level 3 to 4

	Conclusion: Recommendations for Future Research
	References

	5 The Ten Adoption Drivers of Open Source Software That Enables e-Research in Data Factories for Open Innovations
	Introduction
	Data, Big Data, and e-Research
	XSEDE as a Data Factory
	The Ten Adoption Drivers of Open Source Software in XSEDE
	Driven by Needs
	Organized Access
	Trialability
	Well-Documented
	Community Driven
	Observability
	Relative Advantage
	Simplicity
	Compatibility
	Adaptability

	Conclusion, Discussion, and Implications
	References

	6 Aligning Online Social Collaboration Data Around Social Order: Theoretical Considerations and Measures
	Introduction
	Social Order as (Neg)entropy
	Social Order as Social Embedding: Some Common Measures
	Final Considerations
	References


	Part III Approaches in Action Through Case Studies of Data Based Research, Best Practice Scenarios, or Educational Briefs
	7 Lessons Learned from a Decade of FLOSS Data Collection
	Introduction
	Data Sources and Data Types
	Forge Metadata
	Directory Metadata
	Individual Project Website Metadata
	Communication Archives and Social Media

	Data Model and Data Availability
	What Researchers Have Learned from This Data
	Challenges
	Challenge: Availability and Integration of the Data
	Challenge: Validity of the Data
	Challenge: Providing Analyses of Data
	Challenge: Usability of the Data
	Challenge: Sustainability of the Project

	Possibilities for the Future
	References

	8 Teaching Students How (Not) to Lie, Manipulate, and Mislead with Information Visualization
	Introduction
	Suggested Activities
	Maps
	Comparisons
	Conclusion and Additional Resources
	References

	9 Democratizing Data Science: The Community Data Science Workshops and Classes
	Background
	Data Science Education
	End User and Conversational Programmers
	Democratizing Data Science

	Philosophy and Pedagogy
	Broadening Participation
	Project-Based Construction
	Learning Communities

	Community Data Science Workshops
	Day 0: Setup
	Day 1: Introduction to Programming
	Day 2: Web APIs
	Day 3: Data Cleanup and Analysis

	Community Data Science Classes
	Outcomes
	Skill Development
	Outreach
	Empowerment

	Limitations
	Conclusion
	References


	Index

